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1 Introduction

The ever increasing complexity of operating systems led to large code bases and
complex interactions between their components. Traditional operating systems are
monolithic in their design and run most of the drivers and core system services with
high privileges (kernel space). A monolithic kernel is easier to build, but comes with
the risk that a fault in one of the drivers is able to corrupt thewhole system state. Given
that the number of bugs increases with software size, the research of the previous
decades suggests a more modular design, e. g. a microkernel architecture.

Modern microkernels reduce the amount of kernel responsibilities to a minimum,
moving hardware drivers and sometimes even system resource policies to user space.
The kernel is responsible for tasks such as low-level address space management,
thread management and IPC, while the actual split between kernel and user space
implementation depends on the operating system. All components, including drivers,
are contained in their own task, benefitting from the hardware isolation provided by
a virtual address space. Message passing (called IPC) is used for the communication
between the processes.

Due to the increased number of components in amicrokernel system, communication
between them is critical for the overall system performance. Jochen Liedtke, who
researchedmicrokernel design in the 1990s, identified slowmessage passing to be the
root cause of the slow performance of microkernels of the first generation [21]. This
is why he declared IPC as “master” in his research and developed the L3 and later the
L4 kernel to showcase that microkernels can provide high efficiency with increased
security guarantees [21; 22]. The fundamental principle is that of IPC minimality to
minimise the time spent in the kernel.

The L4 microkernel has since evolved into a family of operating systems. Examples
include SeL4 and L4Re (also known as Fiasco.OC) [7]. The L4 Runtime Environment
(L4Re) is an operating system build on top of a 3rd generation microkernel, called
Fiasco. It features a capability-based security architecture, virtualisation of kernel
interfaces and more. Almost all traditional kernel functionality runs in user space
applications, including paging and I/O handling. This allows the system to be con-
figured to its specific use case [11; 20].
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Due to the minimality of IPC in L4Re, communication protocols can grow complex.
The programmer needs to take care of many low-level details, such as the order of
words, correct bitmasks and more. As a result, many microkernel systems use an
Interface Definition Language (IDL) to describe the communication protocols. The
advantage of an IDL is its independence of the underlying hardware and the pro-
gramming language used. Today’s L4Re comes with a C++ framework to define IPC
interfaces and to share the definitions between the components. It avoids the necessity
to learn a separate IDL and helps to abstract from the low-level details of L4 IPC. One
of the motivations to move away from an IDL-based design was the argument that
most low-level systems software is written in C or C++ and that therefore a tighter
integration into C++ is benefitial [8].

With the advent of new systems programming languages that statement is no longer
true. This work will focus on Rust, a programming language originally developed
at Mozilla for both low-level systems programming and higher-level application de-
velopment. It is a modern multi-paradigm language with an emphasis on efficiency,
safety and concurrency. Its type system allows compile-time memory safety by track-
ing ownership of objects and references [25], preventingmemorymanagement errors
such as use after free or double free. These rules are enforced by a system called the bor-
row checker. Another strength is its ability to help to prevent data races at compile
time through a combination of the tracking of ownership and type system features.

Many projects have examined the usefulness of Rust in systems programming [4; 9;
33] and found it to yield comparable performance to C++. To utilise the potential on
L4Re, it is required to port Rust to L4Re and to implement an IPC framework able to
interface with existing system services. The Rust port to L4Re has been described in
[12; 13].

In this work, I will introduce an IPC framework, written entirely in Rust. It will enable
L4Re services to be written in Rust. My design was guided by three criteria:

Easy Usability: The interface specification should abstract from the details of an IPC
message, such as layout of registers, typed / untyped word transfer, etc. The
definition should feel as idiomatic as possible. The user should be able to use the
standard Rust compiler (rustc) in its stable version. Furthermore, the frame-
work shall enable a developer to use L4Re libraries and services without limita-
tion.

Binary Compatibility: The interface should be able to communicate with other un-
modified counterparts, agnostic of whether they were written in Rust or C++.

High Efficiency: IPC is a frequent operation and should not introduce a high over-
head in comparison to the C++ implementation, if any.
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This work starts with an overview of fundamental concepts of L4Re and its build
system as well as Rust and its ecosystem. It will be followed by a chapter outlining
adaptation steps necessary for this work, partly carried out in previous work. After
a discussion of comparable research projects, the implementation will be described
in detail. The evaluation will focus on discussing whether the three design goals
were reached by providing performance measurements and discussing advantages
and disadvantages of the introduced framework. It ends with an outlook on future
work.
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2 Fundamentals

This section lays out some of the fundamental concepts required for understanding
the introduced Rust framework. It starts with an overview of L4 and L4Re, with a
focus on IPC, core libraries and the build system. Last but not least, the Rust language
and its ecosystem is introduced.

2.1 L4Re

The L4 Runtime Environment runs on top of the Fiasco.OCmicrokernel and provides
a minimal runtime environment with basic system services and libraries for task,
thread, memory, IRQ and I/O management. The Fiasco kernel is a small microkernel
providing mechanisms to user space services which implement the system policy on
top. Examples for policies implemented in user space include paging, thread control,
task management and programming interrupts. An exception is scheduling which
has been integrated in the kernel for performance reasons [20].

Each Fiasco task contains a table of kernel objects that it has access to. It can access
these through an index into the table called a capability index.1 A task can only
communicate with components of the system for which it has an entry in its table, all
other components are invisible. This also applies to hardware resources. Tasks can
map capabilities to other tasks to share resource access [20].

In the original design of L4, IPC is synchronous [22]. Liedtke argued that this en-
ables higher performance in comparison to asynchronous message passing such as in
Mach. In synchronous IPC, both communication parties, commonly called client and
server (or service) are blocked on the IPC call. This allows the kernel to copy the data
from one address space to another without an intermediate in-kernel buffer and with
only one address space switch.2 After the message transfer, sender and receiver are
unblocked and resume execution. Another efficiency advantage over asynchronous
IPC is that the scheduler does not need to be activated between the send operation on
the client and the receive operation on the server. Liedtke observed that clients and

1For simplification, the capability index is often also called a capability.
2Most of the arguments here apply to the case of a single CPU core.
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servers repeatedly execute send-and-wait and reply-and-wait operations, respectively.
Through the introduction of joint system calls, additional context switches to the ker-
nel are avoided [21].

The IPC primitives in Fiasco work close to the original L4 design [11]. The synchron-
ous communication primitives are augmentedwith asynchronous notifications, called
virtual IRQ [7]. Those, however,are beyond the scope of this work. The original L4
design used global thread handles which served as endpoints for an IPC operation.
Fiasco’s security architecture is built on top of capability-based access control, avoid-
ing the need for global identifiers. An endpoint in Fiasco is called an IPC gate. Its
receiving end is bound to a thread of the server and the sending end is passed to
the client, providing a channel for communication. By abstracting from the concrete
thread that a message is sent to, the callee is agnostic about its communication part-
ner which can be a user space service or the kernel. A server can listen to multiple
IPC gates at once which is why Fiasco allows the registration of a freely chosen label
per IPC gate to distinguish different senders of incoming messages.

Thread management happens partly in kernel space and partly in user space. This is
why the thread control block is split. The User-Space Thread Control Block (UTCB)
contains data required for the management of a thread from user space and resides
in a pinned memory page. This includes virtual registers used for transferring and
receiving messages. Because the memory page is pinned, the kernel can rely on it
being present when copying a message from sender to receiver.

Each message consists of typed and untyped words, the smallest sendable unit. It has
the size of a native machine word, e. g. 64 bit on an amd64 machine. Untyped words
are normal data with application-specific context and without any meaning to the
kernel; they are copied verbatim from source to destination. Typed words are kernel
objects (such as capabilities) and explained later on. The virtual registers are divided
into buffer and message registers. Message registers are used to send and receive
untyped words as well as to send typed words. The buffer registers are prepared with
flags which instruct the kernel how andwhere to map the received objects or memory
pages to.

Fiasco.OC stores a per-task table of kernel objects (also known as capabilities) to
which a task has access. The user application receives a capability index (similar
to a handle) into this table and uses it for all operations with the kernel object. An
example is the IPC gate which is accessed through a capability to it. As explained
above, the IPC gate abstraction leaves the user ignorant of the participant on the other
side which is in fact true for all capabilities. The type of capability is therefore not
defined by its access method, but just by the communication protocol being used.
Since capabilities are stored in a per-task table and since operations on capabilities
can only be invoked through the index into this table, a task is unable to sneak a new
index and escalate its privileges. Since all resources are accessed using capabilities,
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including fundamental things like memory, the system developer can control how
the task will see its surrounding.

Capabilities and memory pages are sent using the Flexpage abstraction. A Flexpage
is called a typed word and describes access rights, the number of objects or pages
to transmit and the operation. For this work, the most important type is the object
Flexpage, used to transmit capabilities. The send operation of a Flexpage is either
map or grant. If it is mapped, both the receiver and the sender can access the object or
memory page. The sender may revoke the mapping at any time. The grant operation
on the other hand exclusively transfers the Flexpage to the destination task and the
sender will lose its mapping [11; 17; 21].

Before a Flexpage can be mapped or granted, the receiver must prepare for it and
instruct the kernel where to map the received page to with corresponding flags in the
buffer registers. For memory Flexpages, this is the location of the memory to map the
page to, for object Flexpages this is the capability index in the task-local table. The
specified destination is also referred to as “receive window” or “receive slot”.

L4Re messages are described by a message tag which is an additional tag attached
to each message (including replies) being sent. It has the size of one machine word
and contains information about the used protocol, the number of untyped and typed
words to transmit and additional flags. It plays a central role in the communication,
because it is important both for the kernel and the receiver. The receiver uses the
protocol information to discriminate between protocols and uses the word and item
count to verify the length of the message. The kernel uses word and item count to
only copy the relevant bytes of the registers. In a reply, the protocol field is “free”
to use and is therefore used for status indications by convention. Negative values
indicate a failure and 0 indicates success. Positive numbers are free to be assigned by
the protocol.

Most modern microkernel-based systems use an IDL to define the protocol interac-
tions [8; 9] and to hide IPC complexity. An IDL is a custom language that allows an
abstract definition of the client-server relation. The IDL-compiler uses the specific-
ation to generate client and server stubs. Adding support for a new programming
language is as easy as to add a new language exporter. It can be argued that the down-
sides outweigh the upsides: an out-of-source definition requires additional mental
maintenance overhead and requires the programmer to learn an additional language
[8]. A few years ago, low-level services were written predominantly in C or C++ so
that the language interoperability was not as important [8]. This led to the develop-
ment of a C++ framework that used streams to abstract from the serialisation details.
Disadvantages of this approach are that it requires the programmer to write data in
the correct order and read it the same way on the receiving side. It also prevented
sharing of the IPC code between client and server implementations. It was therefore
replaced by a new C++ framework with a declarative approach. A protocol is rep-
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resented as a C++ class, with methods representing the operations that the protocol
supports. For the client, calling a remote functionality on a protocol-typed capability
is the same as calling a “normal” class member function. Specialised data types ab-
stract from the low-level details and serialise to a custom binary transmission format,
tailored towards efficiency. The class can be shared among client and server, allowing
code reuse and easier updates of the Application Programming Interface (API). The
order of typed and untyped words is transparently handled and the developer can
choose any argument order in the interface methods.

2.2 Rust

Rust is a systems programming language with an emphasis on safety, concurrency
and speed. It features a modern type system, providing memory safety guarantees
previously known from garbage collected languages. This chapter gives an overview
of the most important Rust concepts which required to follow code examples and
implementation paradigms throughout the chapters. It is followed by an overview
about the Rust ecosystem, including the build and project manager Cargo.

2.2.1 Language Basics

Rust is suited for systems programming because of the possibility to build efficient
abstractions of low-level details while retaining control over memory layout and al-
location. Example research and volunteer projects demonstrate the applicability of
Rust for programming low-level user space and kernel functionality.3

One key aspect of Rust’s success is its ownership model, where each object has exactly
one owner at a time. The compiler tracks the lifetime of each object and if it goes
out of scope, the compiler inserts the required cleanup code. The compiler annotates
each object and each reference with an implicit lifetime to track its existence. The
programmer can aid the compiler by adding explicit lifetime annotations. Lifetimes
can also depend on other lifetimes, so that an object is valid as long as its dependent
object exists. This is enforced by three rules:

1. Each value in Rust has a variable that’s called its owner.

2. There can only be one owner at a time.

3Further information on this can be found in the related work.
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3. When the owner goes out of scope, the value is dropped (i. e. clean
up actions such as free).

In addition, objects can be referenced any number of times immutably, as long as no
mutable reference exists. Mutable references have to be unique. With these borrowing
rules, the compiler can reason statically when an object behind a variable ceases to
be used. For standard types, the compiler knows how to drop (free) the object, but
the programmer can extend this for custom data types. The memory management
policy of the ownership model provides safety guarantees previously known from
garbage-collected languages.

To abstract from concrete implementations, Rust offers traits, describing functions,
types and constants required for a type. They are similar to interfaces in other lan-
guages (such as Java). In addition to defining functionality, traits are also used to
mark a certain property of a type without an implementation. This can be used in gen-
eric functions or data types to enforce a property of an argument. It thereby serves a
documentary purpose as well. An example is the built-in Send trait. Types implement-
ing it need to make sure that it is safe to move the type across thread boundaries.4
Traits can be marked as unsafe, alerting the programmer to pay special attention
when implementing the trait. Send is marked as such, so the programmer must make
sure that the data type can be copied across thread boundaries and is valid without
further state. After the send operation, the sender has lost access to the object, while
the receiver has gained ownership.

The unsafe keyword in Rust allows the programmer to bypass some of Rust’s safety
rules in a block or function. Using an unsafe block gives the programmer the ability to
dereference raw pointers, call functions marked as unsafe,5 implement unsafe traits,
mutate global state or access union fields [35]. It is apparent that this keeps most
other safety rules untouched. The majority of tasks can be performed without unsafe
Rust [35] and in fact only a small fraction of the standard library (std) relies on it. An
example are the Foreign Function Interface (FFI) bindings to interface with existing
(C) libraries.6 Marking a few lines of code as unsafe offers the benefit that in the case
of an invalid (memory) operation, the error can be traced within the unsafe blocks
and not in the safe abstractions in the levels above [16].

Abstractions over unsafe code need to deal with memory alignment or with a logical
association between types where no memory reference exists. This can be addressed
by a feature of Rust called “zero-sized types” which do not require any space in

4Send is auto-derived for primitive types by the compiler and only needs to be implemented manually
for complex data types.

5This also includes functions from non-Rust libraries which are inherently unsafe to call.
6There are more examples such as doubly linked lists or certain performance optimisations only ex-

pressible through pointer arithmetic. The inclined reader may want to read [16, chap. 19.1] and the
Rustonomicon [35].
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memory and their load/store instructions can be optimised away. This is for instance
useful for a generic member of a data struct. If the struct is parameterised with a zero-
sized type, it will not consume any spacewithin the parent struct and calls tomethods
are optimised to function calls. The Rustonomicon contains a more detailed overview
[35]. One commonly used zero-sized type is the PhantomData. It can be parameterised
over arbitrary generics and helps to avoid errors due to unused generics, for cases
where the type dependency is implicit.

To ease the understanding of code examples in the subsequent chapters, it is useful to
understand the concept of error handling in Rust. Rust leverages the type system to
handle errors and enforces explicit error handling whenever an error can occur. Func-
tions that can produce erroneous results return the enumeration type Result<V, E>,
where V is the value type and E the error type. Enums in Rust are like tagged unions
and can only contain one of the possible states, here Ok or Err. This forces the pro-
grammer to reason about possible failures when consuming the data. For shortening
examples and to make the understanding of provided examples as straightforward as
possible, all examples will use the unwrap() function, defined for the Result<T, E>
type. It returns the value if present and aborts the program with a message (called a
panic) otherwise.

Safe Rust does not permit uninitialised variables or dangling pointers. If a value
may be present or not, the Option<T> offers the programmer to choose between
Some(value) and None. The usage of this pattern within the core language makes
null pointer and uninitialised values superfluous.7 Similar to the Result type, Option
enforces explicit handling of the absence of a value and documents this in the type
signature.

Whenever a method on an object is invoked, the compiler inserts a call to the associ-
ated function and passes a reference to the object as the first argument. This is called
static dispatch. In case of a generic function, the compiler has to know the target type
to invoke the method on the corresponding target type. Rust favours static dispatch,
performing monomorphisation during compile time.8 This is feasible since Rust does
not offer object inheritance and hence does not deal with overriding. In certain situ-
ations, dynamic dispatch is more appropriate, especially if the object passed cannot
be determined during compile time. An example would be the usage of a vector with
different types, all implementing a certain trait. The developer needs to explicitly
opt into dynamic dispatch by casting an object reference into a trait object. The type
information of the original type is lost and only the methods from the underlying
trait are callable [37]. A trait object is a special reference and is referred to as fat
pointer. This is because trait objects are in fact a reference to the target object and a

7The standard library provides helpers to create dangling pointers and uninitialised memory for cases
where this is required.

8Generic types are specialised during compile time and function references resolved. This avoids the
need to track type information during runtime.
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pointer to the virtual method table (vtable). This is different to C++where the vtable
is stored with the class definition and consulted every time a “virtual” function is
called. This optimisation allows a method of a struct to be statically dispatched in the
general case and dispatched dynamically if requested. This has the drawback that a
trait object is larger than a normal pointer and cannot be used for FFI operations [2;
16, chap. 17.2].

2.2.2 Ecosystem and Build Tools

The Rust ecosystem is made accessible using a set of tools, all supported by the dif-
ferent Rust teams. The components work seamlessly together, but are not always
compatible to existing solutions due to the nature of Rust. This section shall focus on
the aspects and tools which I have used for the framework development.

Libraries The first challenge lies within an incompatible library format used by the
Rust compiler. The advanced type system features of Rust require a revised Applica-
tion Binary Interface (ABI), incompatible to the one of C. C libraries ship the compiled
code and the definitions separated in archive files (.a) and header files (.h). In C++,
advanced features such as templates can only be used in header files because there is
no way of representing the types in the binary. Rust bundles compiled code and type
meta information in a custom library format with the file extension .rlib. This avoids
additional header files, but is incompatible to the workflow of most build systems.
The resulting adaption challenges are discussed in Section 4.1.1. To differentiate from
non-Rust libraries, the term crate has been coined in the Rust community, but is used
with the term library interchangeably. In subsequent chapters, the term crate is used
to emphasize that the library is written in Rust.

Cargo Cargo is the projectmanager andbuild tool for Rust projects. EachRust project
contains a Cargo.toml configuration file, specifying dependencies, crate features,9
build scripts and more. Build scripts are small Rust programs compiled before the
actual library or program and perform the setup of the build environment. This may
be the preparation of a C dependency library or code generation for the library. For
instance, C library bindings can be auto-derived from header files using a library
called Bindgen. Bindgen is invoked from the build script and the generated C ABI
definitions are then included by the crate.
Cargo also automatically fetches dependencies from the internet, configures them
and resolves version conflicts. It is also used to execute tests.

9Features is the Rust term for conditional compilation.
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Rust Compiler Versions The Rust compiler comes in three different versions: the
nightly (development) compiler, the beta testing version and stable, meant for pro-
duction use. Nightly Rust contains many features not present in stable. Some of them
have not been stabilised, others will disappear again. This is why I decided to make
use of the stable Rust version. Previous work suggested that stable Rust lacks certain
functionality to be ready for systems programming [4; 9]. This work will discuss the
situation for this project in 2019.

2.2.3 Macros

To avoid repetition or to simplify an existing work flow, most languages offer macros
as a method to transform code from a simpler into a more complex form. C and
C++ use a simple search-and-replace macro system, where occurrences of terms are
replaced by the defined macro body. Rust offers two macro systems which are used
in the Rust IPC framework and which are introduced in this chapter.

The simpler system, sometimes referred to as “1.0 macros” or “macro_rules” trans-
form from and into a Rust Abstract Syntax Tree (AST). During definition, the pro-
grammer can match on specific tokens such as identifiers, types, expressions, blocks,
literals, etc. and generate new code with the captured inputs. As soon as a macro call
does not match the declared (syntactic) input parameters, the compiler will assert
the exact position within the macro call and warn the user which syntax element
was expected. An example from the standard library is the vec! macro which al-
lows the creation of a vector initialised with the specified elements. The expression
vec![1,2,3] is transformed into vector initialisation code and into push operations.
Another example is the println! macro for displaying text on the console. It mimics
a function with a variable number of arguments, which is not supported in Rust.

Rust macros are hygienic in the sense that variables defined within a macro do not
leak the macro evaluation body and that they can only access input parameters, but
not state from outside the macro body [15; 16]. In comparison to their C counterparts,
they are safe to use due to their ability to distinguish between different input syntax
elements and due to their hygiene.

Since the Rust 2018 edition, Rust supports another kind of macros, called procedural
macros (proc macros for short). These are like procedures run during compile-time
and can be pictured as compiler plugins for code transformation. In contrast to the
higher-level macro_rules, they operate on the token level, offering a greater degree
of flexibility, but require manual parsing work of the token stream. To aid the macro
author, crates such as syn and quote exist which can be used to parse the Rust source
code, transform the syntax elements and to serialise the data structures into a token
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stream again. This way, the developer can write its macro logic in Rust and benefits
from the already provided parser implementation.

There are three different proc macro types: custom derives, attribute-like macros and
function-like macros, shown in Listing 2.1. Custom derives are annotations that allow
the automated implementation of traits during compile-time for data structs, enums
or unions. Listing 2.1 shows this on lines 1–2 for the built-in Clone trait.

Lines 4–5 show an example from the rocket web framework. The function is trans-
formed using the custom getmacro, using its arguments and the function body below.
The macro inserts code to parse the HTTP requests in a memory-safe way. This in-
cludes automatically checking the type of age and the validity of the name string.

Listing 2.1: Procedural Macro Examples

1 #[derive(Clone)]
2 struct Money(f64);
3

4 #[get("/hello/<name>/<age>")]
5 fn hello(name: String, age: u8) -> String { }
6

7 fn error(reason: &str) -> String {
8 html!(<html><body>
9 <p>#reason</p></p></body></html>

10 }

Lines 7–10 show a non-implemented HTML macro, generating an error page from a
string, including a reason. This is also a demonstration on the powerful capabilities
of procedural macros.
The macro author is able to fine-control each transformation step of a procedural
macro. If an error occurs, the macro execution can be aborted and the exact location
along with a custom error message can be reported to the user. This means that even
for Domain-Specific Languages (DSLs) like the HTML example above, meaningful
error messages can be reported if the macro is used incorrectly.
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3 Related Work

Communication between threads, processes or machines is an essential part of con-
current and distributed programming. Conceptionally, messages are serialised and
then copied between the entities. The transport mechanisms vary considerably. While
microkernels offer kernel-guarded mechanisms to copy data privately, Remote Pro-
cedure Call (RPC) mechanisms are used commonly over lossy and potentially public
network connections. This leads to different design decisions for data serialisation,
protocol setup, etc. The most generic communication method is RPC, with which this
chapter starts. It moves on to a generic view on IPC on microkernel systems which
feature a Rust port. A case study for IPC in Go is shown afterwards and the chapter
closes with a discussion of the different approaches.

3.1 Rust RPC Libraries

A remote procedure call mimics function call behaviour for contacting a remote pro-
cess. It transparently serialises data, contacts the remote services and deserialises the
reply. Due to Rust’s frequent application in network programming, this is often com-
munication over a network connection, as can be seen below. The main motivation is
to ease the development of client-server architectures.

Servo IPC channels Rust provides a communication abstraction in the standard
library, called a channel. It allows exchanging messages between threads in a uni-
directional fashion. Since it is implemented using shared memory, this work only
within the same process. The ipc-channel is a drop-in API replacement for the std
version, using different communication mechanisms, depending on the platform, to
realise communication between threads of different processes. The used channel im-
plementation can be swapped easily by changing the type import.

Cap’n Proto This library allows exchanging data in a machine architecture and
programming language independent format. It offers in-memory serialisation and
deserialisation of data without copying [3]. The communication protocol is described
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using a custom DSL from which stubs for working with the interface are generated.
The system is easily extensible to new programming languages by extending its com-
piler with a new language exporter.

Tokio-rpc This crate is part of the Tokio framework, implementing a runtime for
efficient asynchronous I/O programming, including abstractions for asynchronous
network communication and work-stealing task schedulers for locally distributed
computing. The RPC module of this framework helps to distribute the asynchronous
workloads over a network [1]. Messages are serialised into network requests and the
replies are processed asynchronously using the Tokio event loop.

TARPC Tim and Adams RPC library is a stand-alone crate providing serialisation
and deserialisation of function parameters and return values for RPC. According to
the project, its main focus is ease of use. The definition of the remote procedures
happens in a trait-inspired syntax within a macro. The macro knows the arguments
for each remote procedure and can therefore derive certain parts of the client and the
server automatically. It uses a network as its transport layer.

3.2 Rust on Other Microkernels

Most microkernel systems use an IDL to define the IPC communication, examples
being Barrelfish, old versions of L4Re, Fuchsia and SeL4 [6; 8; 9; 31]. An exception is
Redox OS, a UNIX-like microkernel operating system, written entirely in Rust. It lacks
documentation on an IDL or an IPC framework and will therefore not be discussed
here [33].

Barrelfish Barrelfish has been developed to research new ways of working with
multi- and many-core systems. Each core is modelled as a separate machine, commu-
nicating solely through message passing. The system is based on a microkernel with
the attempt to move as much functionality into user space as possible. This includes
memory allocation as well as thread and task scheduling [9].

Porting Rust to Barrelfish required a low-level libbarrelfish to be written, exposing
low-level functions to be used by the std port. Adaptations to std included a custom
channel implementation, since threads can migrate across cores and hence share not
necessarily the same address space [9]. Inter-process communication in Barrelfish is
split into a core-local and a cross-core-core case. Messages on a single core are passed
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using CPU registers. For core-core communication, a shared memory region is used.
To ease the interaction between services and to help to abstract from the complexity
of communication protocols, an IDL called Flounder is used. It generates the commu-
nication stubs in the requested programming language. The Flounder compiler was
extended to generate Rust function and type stubs. The stubs for languages other than
Rust make use of the core system library called libbarrelfish and the Rust stubs of
the crate liblibbarrelfish, respectively. In contrast to systems of the L4 family, sending
and receiving is non-blocking by default in Barrelfish and uses callbacks when a mes-
sage arrives. The data needs to be freed from the internal message buffer only after
the send and receive operations have been completed. This is a non-static lifetime
impossible to express in Rust: the object lives as long as the IPC lasts and therefore
rustc cannot reason about the deallocation statically. To resolve this, data is copied
out of the Rust data type into the buffer at the sender and from the receive buffer into
a newly allocated Rust object on the other end. This way, Rust can again take care of
managing the memory objects without affecting the sending process. The code for
this is generated by Flounder. Rust gains access to all system services by accessing
the generated Flounder stubs.

SeL4 SeL4 is a microkernel from the L4 family with synchronous IPC and a focus
on security, including the usage of object capabilities. Furthermore, asynchronous
notifications extend the synchronous IPC, roughly akin to L4Re’s virtual IRQ [7]. Ser-
vice interfaces are defined using an IDL compiler. They connect endpoints which are
bound to a specific thread and incoming messages are disambiguated using badges
(akin to L4Re labels).
Aside from the existing SeL4 infrastructure, there is a project called Robigalia, aim-
ing to replace the entire userland by software written in Rust [29; 30]. The project is
still in an early stage and the implementation is not complete. Compatibility is not a
concern because all components of the existing SeL4 userland are rewritten. This also
includes abstractions of which some are not fully formulated yet [29; 30]. There is no
documentation on the usage of an IDL.

Fuchsia Fuchsia is a newmicrokernel operating systemdeveloped byGoogle. Design
principles include capability-based resource access and control, local namespaces (al-
lowing virtualisation of resources) and a minimal kernel design. IPC is synchronous
for the client, but asynchronous for the server [6; 10]. Fuchsia has support for Rust
clients and servers through its IDL compiler called FIDL.
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3.3 L4Re IPC in Other Languages

The recommended way of handling IPC on L4Re is the C++ framework. It abstracts
from many low-level details, such as the message tag, buffer register setup for Flex-
page mappings, etc. In the C version, these details need to be implemented for each
call separately. The details are wrapped in library functions. The L4Re snapshots ship
support for Python, Fortran and OCAML. In these languages, no access to the C++
framework exists. All IPC interfaces are accessed using the C wrapper libraries.

Go is amodern programming language developed byGoogle to provide an alternative
to C andC++ in high-level systems programming. It achievesmemory safety through
garbage collection and comes with a modern type system. Through mechanisms like
Goroutines and channels built directly into the language, concurrent programming is
made convenient and is encouraged. Goroutines are theGo term for user-level threads
which get mapped to OS threads by the Go runtime. Channels are a mechanism to
exchange data bidirectionally among Goroutines without the need to explicitly share
data, thus avoiding data races [26].

The aim of the Go port for L4Re was not optimal performance, but the best possible
integration of the Go channels with L4Re IPC, while keeping the changes to the Go
runtime minimal.

Go comes with a runtime containing the garbage collector and a goroutine scheduler.
Goroutines are much faster than kernel threads, since they are set up and scheduled
in user space, avoiding a switch to kernel space. But since the kernel is agnostic of the
Goroutines, a call will block the thread from the Goroutine thread pool which did the
call. The Goroutine scheduler will then migrate the Goroutine to a different thread
from the pool, continuing execution, instead of waiting for the reply. The solution to
this dilemma is discussed in [26] and a comparison with Rust is done in [12].

Go channels are an important language design decision to enable the construction of
highly concurrent programs by encouraging the developer to use message passing
instead of state sharing. Channels are tightly integrated into the language, for instance,
a special operator exists to read and write from and into channels. The work Aimed
to use Go channels for IPC due to its wide-spread use in the Go ecosystem [26].
Since Go lacks operator overloading, an extension can only be made by patching the
compiler or the runtime, while [26] decided for the latter. To couple channels to IPC
operations, the runtime was extended to copy messages from the channel buffer to
the UTCB and vice versa transparently. The duplex connectivity expected by a Go
channel is provided by two IPC connections opened during the initialisation.

An essential part of L4Re is the transfer of capabilities using IPC, to enable a dynamic
interaction of services. The transfer of capabilities is similar to that of data, except that
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they are not stored in the message registers, but in the buffer registers of the UTCB.
Similar to sending a message synchronously, sending a capability also requires that
the other party expects it. A capability slot needs to be preallocated on the receiver side.
Therefore, specialisedmethods for receiving and sending capabilitieswere introduced
to Go. The new receiver methods take care of allocating a capability slot before the
receiving thread awaits the arrival of the capability.

3.4 Discussion

This chapter gave an overview about two classes of message passing: RPC-style com-
munication tailored for message exchange independent from the platform and IDL-
based IPC, tailored to allow communication on a specific operating system with high
performance. Microkernel systems using “raw” IPC without any IDL or framework
are not discussed here because the lack of abstraction from the low-level IPC details
make them incomparable to this work. This especially applies to the Robigalia and
the Redox project.

3.4.1 Remote Procedure Call Libraries

RPC libraries are built to communicate with remote services, commonly over a net-
work. A network connection is lossy and protocols need to be able to handle connec-
tion failures. The overhead incurred by these checks is too high for IPC, because con-
text switches are frequent in microkernels and overhead is not tolerable. Furthermore,
communication between entities on a microkernel system is not lossy and private,
hence design decisions are not applicable to microkernel IPC.

This particularly applies to TARPC. While the service definition looks clean and easy,
its implementation is bound to a network connection. By using bincode for serialisation,
it is incompatible to the serialisation used by the L4Re C++ framework. Due to the
custom syntax within the TARPC macro, the programmer needs to learn its usage
and IDEs are unable to assist with syntax highlighting.

The Tokio framework has similar issues as TARPC and Servo IPC channels. Addition-
ally, its asynchronous nature makes it unsuitable for L4Re IPC which is synchronous.
Tokio uses a large event loop to dispatch work to threads or processes which commu-
nicate using the tokio-rpc library. The communication happens via different transport
methods such as UNIX sockets or network connections. The provided communication
abstraction incurs too much overhead. Furthermore, messages are serialised using
Protobuf, a serialisation format incompatible to that of the L4Re framework.
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An exception is Cap’n Proto which has been designed to provide efficient protocol
specifications. Its serialisation capabilities are designed to be independent of the un-
derlying transport mechanism and are focussed on efficiency. Its usage of a DSL
requires the programmer to maintain an out-of-source interface definition, but eases
the interoperability between programming languages. The usefulness for L4Rewould
need to be evaluated separately, but at the moment, this would mean reintroducing
a less specific IDL to L4Re again. It also has the downside to use a binary format
incompatible to the existing L4Re framework which is also not exchangeable.

Rust offers the possibility to define custom DSLs which can be tailored to the use case.
This was used to provide compile-time safety for network protocol specifications [4].
Packages are defined using an ordinary struct which is annotated with a custom
attribute to mark it as a package. The language allows custom type fields such as
u16be, a u16 in big endian and adds additional annotations on each struct member
to specify additional properties. These modifications are called a “compiler plugin”.
In the retrospective, [4] used an early version of procedural macros which have been
stabilised in Rust 2018. It demonstrates the power of statically checking properties
of data structures and their interactions, but also names a few deficiencies. The most
prevalent one is the inability of procedural macros to type-check the expressions that
they operate on. The DSL from the thesis is tailored to network processing and thus
cannot be used for designing IPC interfaces, but it shows how to use Rust’s meta
programming techniques for domain-specific language extension.

3.4.2 IDL-based interface definition

IDLs are the first choice for most microkernel operating systems when trying to sim-
plify the handling of IPC [9; 10; 31]. An IDL offers the great benefit that it is a common
language used throughout the system and that its specification is independent of the
applications programming language. Adding support for a new programming lan-
guage to an IDL compiler comes down to adding new code generators which will give
access to all other system services. L4Re IPC evolved from an IDL-based solution to a
C++ framework for message passing [8]. Reintroducing a new IDL to L4Re is hence
counterproductive. It would require the IDL to be able to export not only to Rust, but
also to the two “official” languages, C and C++. Service authors of non-Rust applica-
tions would need to maintain both the IDL-based interface and the one provided by
C++.

The two promising projects Robigalia and Redox do not use any IPC abstraction.
Redox has the aim to be a UNIX operating system built on top of a microkernel. IPC
has not been a focus of the project yet and calls are still implemented manually [33].
This also applies to Robigalia. Since the full userland of SeL4 shall be replaced, no
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compatibility concerns exist. The IDL of the SeL4 project is not used. Due to the early
design phase of Robigalia, no inspiration can be drawn from its IPC approach.

3.4.3 L4Re IPC Interfaces In Other Programming Languages

As pointed out earlier, most programming languages use the C ABI to interface with
system services or to implement a service. Using this interface, the IPC calls will
not feel idiomatic, no matter the target language and potentially require idiomatic
glue code to be written for each interface. Languages other than C++ can call C
functions only using the defined C ABI. Functions need to exist as public symbols in
the resulting binary for the compiler (or interpreter) to generate a function call to it.
Given the large number of small C functions involved for the IPC call setup, this is
a considerable performance penalty, since these function calls are all inlined in C or
C++. It is therefore something I wanted to avoid in the Rust version.

The aim of the port of Go to L4Re was an idiomatic integration using the language-
provided channels. Since many libraries use the built-in channels, this would allow
a greater reuse of software. Before adapting the language to enhance Go’s channel
implementation, the author investigated the reuse of existing RPC libraries for Go, in
this case the netchan library. In contrast to Go channels, netchan implements channel as
objects with send and receive methods. It cannot make use of the dedicated channel
operator syntax because of the lack of operator overloading. Using this library gives
the advantage that the RPC interface is consistent across platforms. The downside
is its mandatory usage of a network connection which is a high-level abstraction
with much overhead for communication, contradicting the principle of minimality of
IPC on L4Re. Network-based message passing has different design requirements in
terms of data integrity, performance and serialisation. This approach also makes it
impossible to send capabilities which is why the author did not consider the extension
of this library. This is similar to the discussion in chapter 3.1, where similar approaches
for Rust are shown.

For the Go port, the thesis author decided to adapt the Go runtime to integrate the
L4Re IPC mechanisms into the core language. The resulting API usage is comparable
to the C++-stream-based API of L4Re, the predecessor of the current IPC framework
[8].Many problems presented in [26] are not applicable to Rust and hence do not help
in defining an idiomatic IPC framework. Rust’s channels are part of the standard lib-
rary and can hence be replaced. It also builds on a much smaller runtime, comparable
to that one of C++ [16].
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4 L4Re and Rust Infrastructure
Adaptation

The L4 Runtime Environment offers great flexibility to configure the system in low-
level details such as memory allocation or whether file system access is provided. The
system is highly modularised, meaning that there is no common set of functionality
that can be expected on every system. The core components such as the common
API to system services, including IPC, is implemented in the L4(Re) core libraries,
located in a directory called l4re-core. For thiswork, the l4sys and l4re are themost
important ones. The directory also contains core services such as Moe and Ned.1

The l4sys directory contains the basic C (andC++) implementation for accessing the
UTCB, doing system calls, sending Flexpages and more. It also contains the majority
of the C++ IPC framework. Because it does not make use of the libc, this library can
be used in any application.2

The l4re and l4re_c directories contain user space abstractions provided by L4Re,
along with a default implementation for most of them. Examples include the data-
space, region manager or the memalloc interface. These build on the low-level IPC
mechanisms of the l4sys library and allow the creation of dynamic programs with
memory allocation, etc. l4re_c acts as a thin layer of glue code to allow the usage of
the C++ interfaces from C programs.

L4Re comes with a C standard library called Uclibc. It translates most UNIX functions
into L4Re IPC calls to the corresponding servers. This aids to port programs using
UNIX/POSIX interfaces. The version of Uclibc shipped with L4Re has been adapted
to use L4 IPC to IPC services instead of UNIX syscalls.3 It has been split into multiple
libraries, each implementing a specific subset of a functionality, for instance signal
and memory handling.

1Moe is the root task of L4Re providing basic services. It starts Ned which is the init process which
bootstraps the system. See L4Re’s documentation on https://l4re.org/doc/.

2In fact, the adapted C library Uclibc is built on top of multiple backend libraries using the l4sys
package.

3This does not imply that Uclibc is POSIX-compatible, but it provides a UNIX-alike API for most use
cases.
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Before diving into the details of L4Re specifics, it has to be noted that Rust’s standard
library std is already ported to L4Re [12]. It assumes a certain set of services to be
present in the system and accesses it through the libc. It builds on nearly a dozen
libraries such as core or alloc and acts as a common façade for it; applications can be
builtwith only a fewof them if std is not appropriate. Additionally, std also implements
many high-level APIs, for instance for threading, message passing, date and time
handling and more. As described in [12; 13], I patched std so that it uses Uclibc on
L4Re. Since the Uclibc interface is similar to that of other C libraries, the small amount
of changes to std was accepted upstream.

4.1 Build System Adaptation

L4Re is built using a recursive (GNU) Make-based build system called BID. Each
directory contains a Makefile, declaring the directory either as a library, a program,
header include or a subdirectory of the source tree.4 Iwill focus on themodifications to
the library rules (in lib.mk) and program rules (prog.mk). Rust does not use include
files and hence the include.mk is left untouched. The L4 source tree is structured into
packages. EachMakefile defines a variable PKGDIR, specifying the path to the package
root that it belongs to.

Each BID package needs to define input files, output targets and dependency require-
ments. An example is given in the next section. This information overlaps with that
present in the Cargo.toml file (see Section 2.2.2 on page 14). In my previous work
[12; 13], I decided to only integrate the compiler rustc, similar to the already sup-
ported ones (GCC / Fortran). This proved to be difficult, since the Rust ecosystem
expects the Rust compiler to be coordinated by Cargo. The compiler also carries out
linking to allow for cross-crate optimisations and link-time optimisations and hence
does not permit calling the linker separately. Another reason for this requirement is
that libraries and build scripts may add additional libraries and linker arguments and
the compiler makes sure that these are integrated into the linker invocation. This has
been traditionally the task of BID. Features such as conditional compilation and build
scripts were impossible with this solution.

Another selling point of Rust is its central crate registry (crates.io), containing a large
number of free and open source libraries. An example is the Bitflags library, making
bit flag manipulations less error-prone and type-safe without overhead.

In order to keep the L4Re adaptations close to the upstream Rust ecosystem, I decided
to let BID handle all L4Re-related packages, while Cargo manages all Rust-related
crates. In this scenario, BID invokes Cargo whenever it detects Rust source files and

4There are a few more possibilities which are not relevant for most use cases.

25

https://crates.io


handles its output files afterwards. Cargo in turn orchestrates rustcwhich then takes
care of calling the linker. This avoids conflicts between the two build systems because
Cargo looks like an ordinary compiler to BID.

It is possible to pass arguments to rustc through environment variables that are
interpreted by Cargo5 [34]. BID can use these variables to directly influence the com-
pilation process. With the environment variables set, Cargo can compile libraries and
applications. It fetches all dependencies from the crates.io registry, executes build
scripts and continues with the actual compilation.

Throughout the next sections, I will explain the chosen boundary between both de-
pendency managers in more detail. The next section will start with BID-based crates
and how they differ in contrast to a non-Rust L4Re library package. It is followed by
a section on application creation and linking.

4.1.1 Libraries

Rust libraries store both compiled binary objects and abstract type information about
generic types. In contrast to languages such as C/C++, this avoids the need for ad-
ditional include files. This file format has the extension .rlib and is often referred
to with the same name. The normal work flow for BID is to translate source files to
object files and call the archiver to produce a static library. rustc handles the whole
process transparently. I extended the librarymake rules to detect Rust source files and
call rustc in one step. Afterwards, BID resumes with the PC file generation. PC files
are files used by pkgconfig to aid linking. Even though BID does not use pkgconfig
directly, it uses its format to store linker information for each library. Rust libraries
use different mechanisms to pass linker arguments, rendering PC files useless. For
compatibility reasons, PC files are kept and instead of linker arguments, the path to
the rlib is passed. This will pass the library as an argument to the linker. This works
because the rlib format is based on the archive format (.a) used by C/C++. This is
an undocumented implementation detail and not guaranteed to work in the future.
Rustc passes rlib's to the linker in the same way and hence I decided to copy this
behaviour. The details of the Rust library format and their usage by the Rust compiler
are not relevant for library development on L4Re because they are hidden by BID and
Cargo.

Listing 4.1 shows a Makefile with a look akin to other L4Re Makefiles. It defines a
package l4-sys, explained in more detail in Section 4.2 on page 29.

5An example is CARGO_BUILD_RUSTFLAGS.
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Listing 4.1: Makefile for the l4-sys-rust library

1 PKGDIR ?= .
2 L4DIR ?= $(PKGDIR)/../../..
3

4 TARGET = libl4_sys-rust.rlib
5 SRC_RS = lib.rs
6

7 REQUIRES_LIBS = l4sys libl4re-wrapper
8 include $(L4DIR)/mk/lib.mk

The package has a simple layout and builds only one target. In the first line, the
package directory is declared. Relative to it the directory with the basic L4 files on
line 2. Line 4 describes the name and output type of the library. Originally, the rules
in lib.mk expect a library name to end on .a or .so, for static and dynamic librar-
ies, respectively. Rust links statically by default and therefore only the static library
format rlib is considered here. Even though the library’s name is l4-sys, the file name
ends on -rust. Cargo and rustc use a file name suffix with a hash to discriminate
different versions of the same library to allow a dependency to occur multiple times
in a dependency graph. Since this library is built by BID, the hash is replaced by the
-rust suffix and ignored otherwise. This way the compiler can still split off the end of
the file name without destroying the library name. To summarise, an L4 Rust library
target line must contain a file name starting with lib and end on -rust.rlib. If the
library name contains hyphens, they need to be replaced by underscores.

On line 5 of Listing 4.1, the Makefile continues with the specification of the source
files. In contrast to C, the compiler requires only the reference to the main source
file and can find all other source files by traversing the module declarations within
the files recursively. I have added a new variable called SRC_RS, specifying where to
find the Rust sources. Listing 4.1 closes with declarations of the dependencies and an
include directive, specifying the type of output.

In addition to the variables shown in Listing 4.1, the package author can extend
the flags passed to the Rust compiler by specifying RS_FLAGS. This is not required
for most packages, since BID will make sure that all relevant arguments are chosen
appropriately.

4.1.2 Applications

BID builds applications in two steps: it translates the source files to compiled objects
and calls the linker afterwards. The separation is necessary, since an L4Re binary is
arranged differently in comparison to a Linux binary, for instance. It requires custom
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startup and teardown code in the binary and the used ELF sections also differ. Such
details are hidden for most platforms since the linker knows the target platforms.
Hence, a cross-compilation tool chain comeswith all required files. L4Re’s linker script
as well as the custom startup/teardown code is not published upstream and thus
needs to be passed to each linker invocation. The rest of its command-line arguments
is assembled from its knowledge of the library dependencies.

In my first solution [13], I decided to compile applications into static libraries with a
C-ABI-compatible main function. The archive was then passed to ld which detected
the function as entry point and linked a binary. This worked because BID called rustc
directly and instructed it to emit a static library instead of an application. This solution
leaves the linking process with BID, hence getting rid of the issues involved with it.
The downside of this approach is that it loses the convenience offered by Cargo, such
as the download andmanagement of crates, the execution of build scripts andmore. It
also forces each application to declare the main function as extern "C" for the linker
to find the entry symbol.

With the experience from the previous integration attempt, I decided to integrate
Cargo instead of rustc into BID. I decided to join the compilation and linking step
into a single one, in which BID would generate the linker arguments that it needs
to pass. The generated argument list is passed using the CARGO_BUILD_RUSTFLAGS
environment variable. Cargo passes these flags on to rustc which integrates them
into its linker argument list.

To extend Rust’s portability to other platforms, it comes with a built-in list of target
linkers that it supports. It uses the GCC linker ld on most platforms, but supports
other linkers such as Gold. Recent snapshots of L4Re have introduced a script called
l4-benderwhich is used by BID for linking. It wraps the linker call and abstracts from
the cross-platform linking details. It uses PC files (as used by pkgconfig) to retrieve the
linker flags required for linking libraries. BID passes a list of libraries to l4-bender
which then loads the corresponding PC files and carries out the linking. This is a
benefit for rustc because this means that the number of arguments which need to be
passed to the linker decreases and with it the complexity.

The call syntax of l4-bender is different to that of ld, thus the Rust compiler cannot
work with it by default. I added a new linker specification to the Rust compiler, sup-
porting the invocation syntax of l4-bender. The target specification for L4Re has been
adapted to use this linker variant by default. However, l4-bender introduces a new
problem: some of the arguments to it contain spaces. In the CARGO_BUILD_RUSTFLAGS
environment variable, spaces are used as a delimiter between the command-line ar-
guments. Including arguments with spaces in the environment variable is hence im-
possible. At the time of writing, this issue has been reported, but not addressed yet.
As a temporary solution, I introduced another environment variable L4_BENDER_ARGS;
it is parsed by rustc and allows to escape spaces in arguments using quotes (similar
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to the UNIX shell syntax). This solution has a temporary character and was hence
rejected upstream.

4.2 L4rust Libraries

The aim of competitive performance to C++ can only be reached if Rust libraries
access the services in the same low-level manner. The developer should be able to
choose whether memory allocation or the standard library is necessary. It has hence
been important for me to avoid dependencies on std features from my crates. In cases
where this would add convenience, additional implementations with standard library
types can be explicitly switched on.

Based on the idea of a l4re-core directory, I decided to arrange my libraries in a
directory called l4rust. The contained libraries are treated as individual packages
and the programmer can choose which parts are required. Choosing a sensible dis-
tribution of functionality among L4 Rust crates was not obvious from the beginning.
In my first draft I favoured a design where each functionality would reside in a par-
ticular crate, allowing the programmer to select which features are required (task
and thread interface, memory allocation, etc.). This would allow for smaller binaries,
but makes programming with the multitude of interfaces inconvenient. In my final
design I chose to create an l4-rust and l4re-rust library, matching roughly the
structure of the l4sys and l4re packages. For the l4 crate, I followed the common
practise in the Rust ecosystem, where the raw bindings to the C library are in a sep-
arate package that is used as a dependency. The library’s name is suffixed with sys.
The l4-sys crate therefore contains both reimplementations and bindings to existing
C wrapper functions as well as reimplementations of functions accessing the basic
interfaces (including task, factory, etc.). The C interface types and functions in the
l4-sys crate can be generated using a helper program or library that calls Bindgen
from a build script before the compilation of the actual library.

4.2.1 L4 Library Split

The l4 crate makes use of the sys crate and introduces safe abstractions over some of
the functionality. The most outstanding ones are the capability API, the UTCB types
allowing serialisation and deserialisation of data into the virtual registers and the IPC
framework, explained later. It also exports the raw definitions from the l4-sys library
to save the programmer the double dependency declaration.
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The l4re crate contains both the FFI definitions for types and the abstractions built on
top of it. A large part of this library consists of client and server implementations and
interfaces for L4Re services written in C++. Most of them are provided as header-
only implementations; only a fraction is contained in compiled library code. Given
that one of my goals was to introduce a C++-compatible IPC framework for Rust, I
decided to port the interface definitions, instead of binding to the provided Cwrapper
functions.

4.2.2 Inlining vs. Reimplementing

Most of the functionality of the C libraries is written in header files, which is especially
true for inline functions and templated functions and classes in C++. Because the
code of an inline function is inserted at the position the functionwas called, it does not
result in a public symbol in the binary. Therefore, languages other thanC/C++ cannot
use them. To safe time and to avoid the introduction of new bugs, I first attempted to
wrap each function in a non-inline C function. These were outsourced in a separate
library called libl4re-wrapper. The l4-sys crate then provided an inline Rustwrapper
calling the C version from the new library.

Listing 4.2: Example For A Function Reimplemented In Rust

1 #[inline]
2 pub fn msgtag_has_error(t: l4_msgtag_t) -> bool {
3 (t.raw & L4_MSGTAG_ERROR as i64) != 0
4 }

While wrapping functionality avoids introducing new bugs, there is a certain over-
head when calling half a dozen functions to set up and carry out the IPC. This espe-
cially applies for small functions that are called repeatedly. Most of these functions
are essential for IPC operations, on the critical path and frequently called. Listing 4.2
shows how easy a reimplementation for them can be. The reimplementation also helps
to avoid the usage of unsafe Rust to call into a C library. Most of the l4sys helper func-
tions deal with bit-wise operations for which the Rust syntax is almost compatible
with C. The porting work therefore often reduced to adjusting namespaces.

Rewriting functions becomes problematic when it comes to inline assembly or GCC-
specific functionality. An example are functions such as l4_ipc_call or l4_ipc_wait.
In the overall IPC setup process they appear infrequently. I therefore wrapped these
in a separate C library as extern C functions. This helped to avoid the usage of inline
assembly, which is not available on stable Rust. To avoid name conflicts and to mark
functions as wrapped, I used the suffix _w for their redefinitions.
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Some l4sys functions use GCC-specific features, such as functions to count the length
of a string or even to allocate memory. This is necessary to avoid the usage of the C
library which uses the l4sys package as a dependency. By restructuring code, I was
able to avoid the usage of most of the GCC intrinsics. Some functionality such as C
string comparison was reimplemented in Rust.

Parts of the l4sys C library provide an API for basic system services, such as the
interfaces for accessing and managing factories, tasks and threads. These operations
are simple IPC messages to the kernel.6 The communication scheme is a recurring
process of filling the message and buffer registers, making a call and working with
the result. Repetitions can easily be mitigated by Rust’s macro system which is why
I decided to avoid the wrapping overhead for these interfaces and reimplement the
functions in Rust. An advantage is that some of the functions in the l4-sys crate can
be called from safe Rust.

4.3 Rust Abstractions

To provide a safe and idiomatic usage of the L4 services, I implemented a few basic
abstractions to avoid the usage of unsafe FFI code. This section shall give a short
overview of two concepts that are required to understand the IPC framework imple-
mentation.

4.3.1 Error Handling

The L4 crate builds on the error handling facilities of Rust, provided by the core crate7
(compare Section 2.2.1 on page 13). IPC errors can have two origins: the thread control
registers and the message tag. If an IPC operation was incomplete or interrupted, the
error code is written to the thread control registers by the kernel. User processes
can reply with an error code by using the label of the message tag. L4Re error codes
are negative integers. The l4::Error type allows for conversion from and into an
integer-based error code, applying the error bit mask if required.

6They can be interposed as well.
7Rust developers will know the error types from the standard library. These are re-exported from the

underlying core crate.
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Listing 4.3: L4Re IPC error handling using the C API

let error = l4_ipc_error(l4_ipc_call(...), l4_utcb());
if (error) {
println!("Got error code {}", error);
return;

}

Listing 4.4: Idiomatic error handling using the result of the MsgTag type

let _ = l4::ipc::call(...).result()?;

Listing 4.3 and 4.4 compare the C API error handling strategies of the C IPC bindings
with the idiomatic version of Rust. The C version uses the l4_ipc_error function
to extract the error from the message tag returned by the IPC call. The programmer
needs to take care to interpret the numeric error codes manually.

The idiomatic version of Listing 4.4 uses Rust types exclusively. It starts with the call
function that returns a MsgTag object. Themessage tag type provides a resultmethod
that extracts the error code of the message if present and converts it into a Rust enum.
Apart from checking that the error code represents a valid enum variant, this step
does not add additional runtime overhead. This is due to the internal representation
of the enum as an integer.8 A Rust developer will directly recognise the default error
handling strategy of propagating an error upwards using the question mark operator
or unwrapping the value if no error was present. The performance cost of this is as
high as the manual check for an IPC error and is still left optional. If a programmer
decides to omit error handling by the calling unwrap() method on the result, the
program would abort, printing the error name (e. g. InvalidMem) along with the
source file and line.9 This is thanks to the error type implementing the Display trait,
printing the enum variant name instead of the underlying IPC error code.

4.3.2 Capabilities

Capabilities play a central role in L4Re for interaction with the world outside the
current task. Since capabilities are an index into a per-task table of kernel objects, the
C type is only a type alias to an integer.

8This property is achieved by annotating the enumwith #[repr(i64)] andby the usage of functionality
from the num-traits crate.

9Normally it would also print a backtrace, but this is not available for L4Re yet.
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Figure 4.1: Schematic overview of the capability type architecture

C Dataspace
T: Interface

l4_cap_idx_t cap

fn info() -> …

C Cap

Interface iface

fn is_valid() -> bool
fn cast() -> Cap<T: Interface>

I Interface

fn cap() -> l4_cap_idx_t

wrapped by

The object behind a capability can be accessed using the normal IPC mechanisms and
is only distinguished through the protocol it supports. The protocol is hence the key
property of a capability. The l4 crate splits a capability into two parts: the interface
defining the protocol and the Cap type implementing actions on the capability itself,
as shown in Figure 4.1.10 A protocol interface is a wrapper struct around the raw
capability index, but may contain more fields. It provides the methods to carry out
the protocol actions through IPC calls on the index.
The Cap type defines common operations such as checking the validity of a capability
index or casting the internally used protocol implementation to a different one. For
the Cap trait to be able to use the capability index of the protocol, the Interface trait
has been introduced. It serves two purposes: it provides a common marker trait for
IPC protocols and it allows access to the underlying capability index. The diagram
illustrates that the Cap type is a wrapper around the Interface, as is the Dataspace
implementation around the l4_cap_idx_t type. The Cap<Dataspace> type is a zero-
cost abstraction because of Cap and Dataspacewrapping capability index and due to
Rust using static dispatch.

Listing 4.5: Capability Type Demonstration

1 use l4::Cap;
2 let c: Cap<Untyped> = l4re::env::get_cap("test").unwrap();
3 assert_eq!(c.is_valid(), true);
4 let ds = c.cast::<l4re::Dataspace>();
5 assert!(ds.info().is_error());

Listing 4.5 shows the Cap type in action. It starts by querying an untyped capability
from the initial set of capabilities that each L4Re task has. The Untyped interface is an
empty protocol with no functionality. Line 3 and 4 demonstrate the call of methods
10The UML annotations C and I for interface and class should be substituted by trait and struct for the

given example.

33



from Cap which use the capability index stored in the protocol interface. The cast on
line 4 deserves special attention: because an Interface has defined behaviour, the
interface can be casted from one type to another. The resulting Dataspace interface
provides, among others, a method to query information about the dataspace behind
that capability. Since no dataspace has been requested so far, this operation must fail,
which is asserted.

The Cap abstraction has the advantage to be easily extensible. For instance, the l4re
library contains an extended version called OwnedCap, which is able to use the L4Re
capability allocator to automatically allocate a new capability index and drop it when
the owned capability goes out of scope. Thanks to Rusts ownership and type sys-
tem, this is as efficient as calling the alloc() and free() functions of the cap_alloc
interface from C because these calls are inserted during compilation.

The design is similar to the C++ version which separates generic capability function-
ality from the protocol implementation [36]. Instead of wrapping types within each
other, the C++ version uses inheritance to implement smart capability functionality,
similar to the OwnedCap.
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5 IPC Framework Implementation

L4 IPC primitives are designed to be minimal to maximise the call performance. As a
result of the low-level steps, the interaction protocols can grow complex and thereby
expose a new surface for introducing bugs in the communication architecture of the
components. Different solutions exist to mitigate the complexity of protocols, mainly
through the usage of IDL, for instance in Barrelfish [9]. IDLs have the downside that
they are defined out-of-source. In today’s L4Re, this has been integrated more tightly
with C++ programming language by creating a framework capable of defining the
communication as methods invoked on an object, similar to a remote procedure call
(RPC). The first advantage of the framework is that it assigns names to the protocol
actions as if invoking a local method. The second is that arguments and return values
are automatically serialised and deserialised into the registers of the UTCB.

From a simplified view, the user defines a templated C++ class that declares the
methods to be present for the communication. Then the framework will generate the
client side and some parts of the server side code [19]. Server interfaces are defined
in include files, making it easy to share them between C++ code. However, to expose
the C++ API to other applications, a C interface wrapper needs to be written for
each method of the IPC interface. This makes the usage from other programming
languages cumbersome and also negates some of the performance benefits that can
be applied when using the framework from C++ directly.

Instead of using the indirection via a C library, I decided to build a new framework in
Rust from scratch. This is possible since communication takes place via the message
and buffer registers, requiring a fixed “ABI” between the communication partners1.

The following section startswith a short overview of the C++ framework and explains
some of the details relevant for Rust interoperability. Next, channel-based and macro-
based interface definitions are compared. This is followed by the explanation of the
serialisation functionality that forms the foundation of the framework. Afterwards,
different approaches for the implementation of a server loop and the final loop design
are discussed. The last two sections discuss the automated export of Rust interfaces
to C++ and the testing of the Rust IPC framework.

1It is comparable to an ABI for RPC.
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5.1 A Brief Overview of the C++ Framework

The C++ framework defines each IPC call (and its receiving counterpart) as a distinct
function in a protocol. It takes care of writing and reading from and to the virtual
registers of the UTCB transparently. Listing 5.1 shows the example client/server calcu-
lator interface from the L4Re snapshot. An interface inherits from the Kobject_t type,
whose parameters define properties of the interface, as shown on Line 1. Most import-
ant is the third template argument, the protocol ID used for the label in a message
tag of an IPC call. An optional fourth parameter can be used to describe the receive
slots for this protocol on the server side. This parameter can be omitted because no
Flexpages are sent.

Listing 5.1: Calculator interface in C++ from the L4Re examples

1 struct Calc : L4::Kobject_t<Calc, L4::Kobject, 0x44> {
2 L4_INLINE_RPC(int, sub, (l4_uint32_t a, l4_uint32_t b,
3 l4_uint32_t *res));
4 L4_INLINE_RPC(int, neg, (l4_uint32_t a, l4_uint32_t *res));
5 typedef L4::Typeid::Rpcs<sub_t, neg_t> Rpcs;
6 };

The interface methods are defined on lines 2–3 using macros and can be chosen de-
pending on the requirements on the interface method. The L4_INLINE_RPC is the
simplest version, defining only the name, input and output parameters and the re-
turn value. The first macro argument is the return value, the second the method
name, followed by a list of call arguments enclosed in parenthesis. The C++ frame-
work defines mutable pointers and references as output parameters and by-value or
const pointers and references as input parameters.2 This means that a callee of the
sub function needs to provide two values for the subtraction and a pointer where the
framework will write the result of the IPC operation to.

To distinguish between different operations, the framework uses opcodes, which are
written as a first parameter to the message registers. In the example from Listing 5.1,
these are auto-enumerated and hidden behind the Rpcs type definition of line 4,which
is responsible for the enumeration. The RPC macros do not create method definitions
from the passed arguments, but define inner structs that encode the argument types
and order. These are then registered with the Rpcs type. By creating public members
of these structs with the name of the corresponding method, it is possible to redirect
calls on the them to code implementing the serialisation and call functionality. For
the above example, there is a sub member of type sub_t that implements the call
operator.

2There are also specialised types for parameters used for input and output.
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The serialisation framework is optimised for maximum performance. In the C data
structures, the finest granularity for message register access is a machine word. In
contrast, the C++ framework packs data more tightly, with the alignment of the types
dictating the next spare memory region. The aim is to reduce the memory footprint
and the costs for accessing the memory. This means that for line 2 of Listing 5.1, the
two arguments to sub fit into one word on a 64 bit system.

The macro and the template meta programming derive the complete client-side part
of the communication protocol, so that the interface can be used like a local data type.
On the server side, the service type inherits from the Epiface_t type and implements
the method dispatch for incoming messages automatically. The implemented server-
side names of the IPC method handlers are prefixed with op_. The developer only
needs to implement the method almost like every other method: input parameters
are used and results written to the supplied output parameters.

5.2 Rust Interface Definition

The previous chapters have introduced differentmethods for specifying IPCprotocols,
including IDL, channels and in-language code generation. As a consequence of the
L4Re IPC evolution, I decided against the usage of an IDL. The introduction of a new
DSL is problematic because it would need adaptation both for Rust and C++ to reach
the aim of compatibility.

In this section, I will introduce the macro-based IPC framework and discuss its evol-
ution from a channel-based approach.

One aim during the implementation of the framework was its independence of the
standard library to avoid a dependency on Uclibc and thus on a variety of standard
L4Re services. This includes, for instance, allocation or file system access. Given that
the framework can be used to implement the backend services for this functionality,
it makes more sense to not rely on std at all.

5.2.1 Channel-based Communication

Rust channels and L4Re IPC Gates share common designs: they transport data uni-
directionally and require data to fulfill certain traits. Furthermore, the communication
can happen synchronously in Rust channels,3 matching L4Re’s behaviour. Rust chan-
nels are by default agnostic about the data being sent, as long as it implements the

3The standard library ships both asynchronous and synchronous channels.
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Send trait. To reach the aim of easy usability, it is necessary to restrict the channel
to a protocol in order to enforce the correct types and order of arguments. This can
be implemented using session types [14]. A session type leverages the build system
to encode steps of a protocol in the type system. In Rust, this is achieved using gen-
eric arguments. Each execution branch that a protocol may take is represented by a
type which holds generic references to the current step and to the subsequent ones,
thereby spanning a type list. An important concept is the principle of duality, which
demands that a protocol has a dual of itself that enables the receiver to understand
the counterpart of the protocol. Applying this to L4Re, an IPC call can be represented
as a type list containing the RPC arguments as list items and whose dual is the server
side.

Listing 5.2: Excerpt of the type list implementation and demonstrative example

1 pub trait HasDual {
2 type Dual;
3 }
4

5 struct Sender<T, Next>(PhantomData<(T, Next)>);
6 impl<T: Serialisable, Next: HasDual> HasDual for Sender<T, Next> {
7 type Dual = Receiver<T, Next::Dual>;
8 }
9

10 struct Receiver<T, Next>(...);
11 impl<T: Serialisable, Next: HasDual> HasDual for Receiver<T, Next> {
12 type Dual = Sender<T, Next::Dual>;
13 }
14

15 struct End;
16 impl HasDual for End { type Dual = End; }
17

18 type CalcSub = Sender<u32, Sender<u32, End>>;
19 let receiver = CalcSub::dual;
20 // ^^^^^^^^ -> Receiver<u32, Receiver<u32, End>>;

Listing 5.2 shows the application of session types to the sub method of the calcula-
tion server interface. The first building block is the trait HasDual which requires the
implementer to specify its type dual on implementation. The impl blocks of Sender
and Receiver specify their respective counterparts on line 6 and 11.

The Sender type is declared on line 5 and is a struct with two generic arguments,
representing the current call argument type and a generic to the next list element.
The Next generic is constrained by the HasDual trait bound, so that the principle of
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duality is given inductively for the whole type list. The phantom members of the
structs are used to inform the compiler that the generic arguments are required and
are not dead code subject to be optimised away. PhantomData is a zero-sized type,
making the enclosing struct zero-sized as well, so that the protocol specification does
not take up any memory.

The End node declared on line 15 is special because it specifies itself as the dual. Since
it lacks generic arguments, it encodes the end of the type list. A return value and
operand code specification have been omitted for brevity reasons.

The duality property of each list node and its recursive structure allow defined type
lists to be inversed to match their respective dual versions. The example type list for
the subtraction operation of the type server is defined for the sender on line 18. The
receiving dual is automatically derived on line 19 during compile-time.

The next step would be the extension of the channel API to let the channel enforce the
protocol specification defined using the type list, as done in [14]. It turned out that
this approach would be unergonomic to use due to the manual, repetitive interface
usage. The user would still need to pass each call argument manually to the channel.
Even though this uses safe Rust and the protocol would be enforced during compile-
time, the overall usage pattern is close to that one of C++ streams, where all values
have to be written to the UTCB explicitly by the developer [8]. Another issue is the
location of the type lists for each IPC operation within the module hierarchy: the C++
framework uses inner types to hide away the implementation defaults. Rust does not
offer inner structs, requiring a grouping module for all operations of a protocol. This
makes the overall interface cumbersome to use.

5.2.2 Macro-based Interface Definition

Rust traits are used to define common behaviour across types. The most common
usage is the definition of shared methods agnostic of the target type. A trait does not
leak information about the actual implementation details, hence it is transparent to
the callee of an object implementing a trait, where and how code is executed. This
makes a trait a good fit to share protocol behaviour across clients and servers. The
usage of such a trait can be made convenient by generating it through a macro. This
idea was inspired by TARPC [32] which uses a macro with a custom language to
define a service for RPC. The TARPC macro generates the corresponding trait that
the user can work with.

For the L4Re IPC interface definition, I chose to follow the example of TARPC and
implemented a 1.0-style macro as a façade to the more complex macro calls and type
definitions. To ease the learning process, I kept the macro call syntax compatible
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with Rust traits. An example is shown in Listing 5.3, matching the C++ version from
Listing 5.1 on page 36.

Listing 5.3: Example calculator interface for a client/server calculation protocol

1 iface! {
2 trait Calculator {
3 const PROTOCOL_ID: i64 = 0x44;
4 fn sub(&mut self, a: u32, b: u32) -> i32;
5 fn neg(&mut self, a: u32) -> i32;
6 }
7 }

The trait uses standard Rust syntax, but adds a few additional requirements on the
definition. The first is the mandatory protocol ID specification on line 3. Furthermore,
each interface method requires a mutable self reference, allowing state mutations in
a server implementation. Empty interfaces are forbidden.

The declared methods are automatically enumerated and their assigned opcode is
compatible to the C++ framework, as long as the method order matches the Rpcs<>
order (see Section 5.1). Similar to the C++ framework, the opcode type can be over-
ridden by an associated type called OpCode in the interface trait (not shown in the
example).

Output Arguments and Error Handling Unlike C/C++, Rust does not use pointers
ormutable references towrite output arguments to. These are returned directly by the
function. To propagate error state, it uses a Result<T> type,4 to return either an error
or a value. The methods in Listing 5.3 are declared without a result type, even though
they are generated as such. The actual return signature of sub is hence not i32, but
Result<i32>. This is added behind the scenes to allow for easier readability of the
interface. I decided to omit this detail in the interface definition to keep it concise to
read. In the retrospective, this introduces an inconsistency with the explicit notation
of the mutable self reference which the implementer needs to specify repeatedly. In
the future, it makes sense to require the explicit specification of the Result type in
method signatures.
Both client and server side benefit from Rust’s high-level error handling facilities and
abstract from the integer codes used in L4Re. The conversion between the integer
codes and the error enum is cheap because the error type of the l4 library can be cast
to an integer.

4The L4 crate defines a type alias: type Result<T> = Result<T, l4::error::Error>.
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Client Generation The iface macro generates the full client implementation from
the trait declaration passed to the macro. The client code is highly repetitive: write
the opcode, serialise the call arguments, generate the message tag, do a call and read
the return value. The methods can hence be generated and are stored as default
implementations in the interface trait. Within each method, the first written value is
the opcodewhich themacro derives from themethod position.Next, the argument list
is serialised and the IPC call is carried out. Afterwards, the replied data is deserialised
and passed as return value back to the callee. Since the implementations are contained
in the trait itself, implementing the client struct is an empty impl block.

Server Generation The server-side IPC has a similar repetitive structure, which is
automated in a hidden and generated trait method called dispatch(). It reads the
opcode from the first message register and uses it to dispatch to the corresponding
method defined in the trait. Since the types of the arguments are known statically, the
calls to deserialise them are inserted in the correct order for each method invocation
in the dispatch method. A server struct needs to implement the public methods of
the trait, as for any non-IPC struct. This also applies to return values (and errors, as
explained above).

Deriving Clients And Servers Client and server implementations are usable as cap-
ability interfaces, as shown in Figure 4.1 on page 33. To accomplish this, they need
to implement the IfaceInit trait, specifying how to set up a capability.5 The con-
sequence is that the developer needs to implement the IfaceInit, Interface and
the IPC protocol trait. The repetitive character can be automated by a procedural
macro attribute, as shown in Listing 5.4. The macro attributes transform the structs
and insert the required members such as the capability index and implement all re-
quired interfaces. On the client side, the required input for this is the name of the
protocol trait. On the server side, the macro attribute is able to derive all information
on its own.

Listing 5.4: Automated Derivation

1 #[l4_client(Calculator)]
2 struct Calc;
3 #[l4_server(Calculator)]
4 struct CalcServer

Macro Implementation When I started the framework development, procedural
macros were not stabilised yet. Therefore I based my first implementation on 1.0-

5IfaceInit extends the Interface trait.
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style macros similar to TARPC [32]. The advantage was the quick definition and
powerful matching of different syntax elements (e. g. type, literal, path). I split the
implementation into smaller macros for the method argument serialisation, method
body and trait generation and method opcode enumeration. This is brought together
by the iface! façade macro.

As the code grew more complex, it turned out that the macro_rules have limited
parsing flexibility and are not suitable for more complex input processing. The most
apparent issue is that they are unable to deal with optional arguments properly. It is
possible to match zero or more and zero or one occurrences of a syntax token, but to
make use of an optional argument, each match arm of the macro needs to be duplic-
ated for a version with and one without the argument present. The code duplication
led to an interface macro with multiple hundred lines of code. This affected optional
parts such asmethodswithout return type, optional opcode type specification or even
methods without arguments. Another limitation is that inputs cannot be compared
against each other or against constants, preventing specialisation on different input
arguments. For instance, when sending a Flexpage, the serialisation has to happen
at the end of the used message registers, yet reordering is impossible here, since this
particular type cannot be distinguished from other arguments. Another shortcoming
is the problematic search for error causes within the nested macro structure. Any
error in a deeper level is reported by the compiler as if occurring in the outermost
level. This problem can only partly be resolved by viewing the expanded macro code
because invalid macros generating syntax errors will not produce any output.

Procedural macros can solve this dilemma by providing the developer with the pos-
sibility to implement the macros directly in Rust. The stabilisation of this feature
happened in the Rust 2018 edition, at the same time the IPC frameworkwas implemen-
ted. Reimplementing the complete macro code would have been too time-consuming,
so I decided to only reimplement the façade macro and pass an expanded version
to the specialised macros. The macros of the deeper level always expect a complete
specification of all features, with optional parts being filled by default choices. The
ifacemacro façade is left with the task to check an interface for syntactic validity and
whether it adheres to the additional requirements. A benefit is a more fine-grained
error handling and the possibility to explain errors with custom error codes. It is also
possible to report the exact error position within the macro input. An example of an
error message from the iface macro is given below.

Listing 5.5: Example error message for an incorrect interface trait definition

error: First parameter must be &mut self
--> calculator/interface.rs:14:16

14 | fn sub(a: u32, b: u32) -> i32;
| ^
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5.3 Data Serialisation

The serialisation functionality is the heart of the interoperability between Rust and
C++ clients and services. In contrast to most serialisation frameworks, the data is
transmitted using a private and lossless communication channel. The design maxim
is therefore maximum performance; no attention needs to be paid on losing messages
or transmission errors. The exact layout of the serialised messages is dictated by the
C++ framework. The steps are as follows:

1. Cast base pointer of the registers to a char * and add the offset (of already used
bytes) to it.

2. Align the pointer to the data type to be written.

3. Cast the pointer to a data-type-compatible pointer, i. e. *mut l4_utcb_mr to
*mut T), dereference it and write the argument to it.

4. Add the length of the data type to the offset and repeat from the first step for
the next argument.

This strategymakes sure that arguments are alwayswritten and read in an architecture-
efficient and aligned fashion. The layout is similar to the C ABI of structs containing
different data types. The templated function msg_addwraps these steps and can there-
fore serialise primitive data types. More complex types implement functions such as
to_msg and to_srv, which decompose their data members into primitive types and
call msg_add on each. The actual implementation is more complex, yet this knowledge
suffices to implement a Rust counterpart. It consists of three parts: the Serialisable
trait, the Serialiser trait and abstractions for reading/writing the message and buf-
fer registers.

The Serialisable trait Serialisable is an empty marker trait marking a data
type as serialisable. A data type is Serialisablewhen it can be written to a memory
region without depending on additional state, so that it is valid within a different
address space. Additionally, it needs to have a C++-compatible counterpart. The first
condition is a stricter version of the Send trait, demanding movability across threads.
As with Send, This marker trait is unsafe and the implementer must make sure that
the conditions hold. It is automatically implemented for all primitive Rust data types,
except for char.6

6The rust char type is a Unicode character. While its maximum length is known at compile time, its
actual length is not. It is hence not supported and a string of length 1 can be used instead.
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Virtual Register Abstraction The serialisation steps described earlier deal with
pointers and pointer arithmetic and are hence using unsafe Rust. To minimise the po-
tential for memory safety violations, I created a wrapper for write and read access of
the virtual registers . It offers methods to read and write data types which implement
the Serialisable trait and accounts offsets transparently. As in the C++ version,
bound checks are inserted and converted into Rust error types. Due to the accounting,
the register abstraction also knows the number of words and items in the registers
and can be used for generating the message tag for an IPC call.

The Serialiser trait The Serialiser trait is implemented for all types sendable
with amessage. It contains a read and awritemethodwhose arguments are the virtual
registers to which they have access to. For primitive types, the trait is implemented
automatically and contains simple delegation calls to the write and read methods of
the virtual register abstraction. Complex types can be decomposed into types that
implement Serialisable and are thus already known to the framework.

Listing 5.6: Serialiser Implementation for Option<T>

1 unsafe impl<T: Serialisable> Serialiser for Option<T> {
2 #[inline]
3 unsafe fn read(mr: &mut UtcbMr) -> Result<Self> {
4 let val = mr.read::<T>()?;
5 Ok(match mr.read::<bool>()? { // Option is valid?
6 true => Some(val),
7 false => Option::<T>::None
8 })
9 }

10

11 #[inline]
12 unsafe fn write(self, mr: &mut UtcbMr) -> Result<()> {
13 match self {
14 None => { // write "empty" Opt<T>
15 mr.skip::<T>()?;
16 mr.write::<bool>(false)
17 },
18 Some(val) => {
19 mr.write::<T>(val)?;
20 mr.write::<bool>(true)
21 }
22 }
23 }
24 }
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Listing 5.6 shows the implementation of the Serialiser trait for the non-primitive
Option<T> type. Rust allows to add additional trait implementations to a type out-
side the module or crate that it was defined in. This implementation will only be
accessible from the same crate. This works in this scenario because the framework is
implemented in one crate.

The compatible type from the C++ framework is Opt<T> and its struct layout dictates
the serialisation and deserialisation code shown in the listing. It consists of a value
and a boolean indicating its existence or absence. The readmethod therefore reads the
value and the boolean, both implementing Serialisable, from the message registers
and returns a Rust Option depending on the boolean flag. The write works in the
opposite direction: if no value is found, the value serialisation is skipped and the
boolean written, otherwise the value is written first, followed by the boolean value
true.

Table 5.1: Overview of type mappings from Rust to C++
Rust Type C++ Type

u8 unsigned char
i8 signed char
u16 – u64 l4_uint16_t – unsigned l4_uint64_t
i16 – i64 l4_int16_t – l4_int64_t
f32, f64 float, double
usize, isize l4_umword_t, l4_mword_t
bool bool
() void
Option<T> Opt<T>
Cap<T> Cap<T>
String String<>
&str String<>
Vec<T> Array<T>

Table 5.1 shows all Rust types currently supported by the serialisation framework and
their C++ counterparts. Vec and String are heap-allocated data structures. Their
usage is convenient and safe because the data is copied into their storage and hence
owned by the callee. This comes with an increased overhead due to the allocation.

String and &str are both Rust string types. A Rust string is guaranteed to contain
valid UTF-8 text, which is checked on its creation. Internally, it consists of the length
and a reference to the memory where the data is stored. This is where the difference
between both lies: &str is a string reference which can point to any region, including
to the stack. A String is heap-allocated and an owned data struct. It is allocated on
creation and freed as soon as its binding goes out of scope. Receiving a &str via an
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IPC operation is unsafe because it references the data from the message registers and
will be overwritten on the next IPC call. It is the users responsibility to copy the string,
e. g. to an array on the stack or to an allocated String. It is advisable to evaluate
the usage of an unsafe wrapper type for &str in future versions of the framework to
reflect this. The String type is not affected because it always copies the data to its
heap storage.

5.4 Server Loop

Microkernel services share a common structure across all protocols: they wait for
incoming messages, call the server logic, reply and wait again. This can be described
as an endless server loop, receiving and dispatching messages and replying with
the result from the IPC server implementation. In L4Re this is a loop with recurring
reply-and-wait operations, which is a joint system call. It uses an open wait operation
to receive messages from any senders and uses the label attached to each message to
identify the IPC gate on which it was received. After reading the message from the
UTCB, the server logic is executed, the reply is written back and the loop will start
again with the joint reply-and-wait.

The first step before launching a loop is the label registration with the kernel. As
explained in Section 2.1 on page 8, a label has the size of a machine word, the same
size as a pointer. This fact is used by the C++ framework to reinterpret the label as a
pointer to a server object. This works because all servers are derived from the common
Epiface_t type. The upcasting to Epiface_t is enough to call the virtual dispatch()
function. The usage of arbitrary pointers without guarantees about the target object is
unsafe in Rust and considered not idiomatic. During the development, I came upwith
two different versions of the server loop and I will discuss both in the subsequent
sections. For both implementations, I decided to integrate the implementation for
registering a new server object with the loop in the loop itself.

5.4.1 Vector-based Service Registration

Vectors store items of the same type (and size) on the heap and grow through real-
location. To allow different types to be contained in a vector, objects can be cast into
trait objects, wrapped in a Box<T>. A Box is a fat pointer with meta information about
the object stored in the pointer and a reference to the heap-allocated memory that it
refers to.
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The server loop in Listing 5.7 contains a vector of objects implementing the Dispatch
trait. Since it acquires ownership through the usage of a Box, the server loop canmake
sure on registration that the server objects live as long as the loop. When a newly
instantiated IPC service is registered, the vector of the loop takes ownership of the
object, casts it to a Dispatch trait object and registers the vector index of the objectwith
the kernel as a label for the corresponding IPC gate. The Dispatch trait contains the
implementation to dispatch an incoming message to a specific IPC interface method
of the trait.

Listing 5.7: Server Loop With Vector-based Registry

1 pub struct Loop<Hooks: LoopHook> {
2 thread: CapIdx,
3 utcb: *mut l4_utcb_t,
4 servers: Vec<Box<dyn Dispatch>>,
5 hooks: Option<Hooks>,
6 }

On message arrival, the kernel passes the vector index of the server object that was
registered for the IPC gate to the server loop. The loop uses the index into its vector of
server objects and retrieves the box pointer. On dereferencing the boxed trait object,
the generated dispatch method is invoked and delegates the received information to
the RPC handlers.

Aspects like the send/receive timeout, the actions on application or IPC errors can
be customised by server loop hooks. The Loop struct of Listing 5.7 is parameterised
over a LoopHook trait. They allow the customisation of the loop behaviour without
reimplementing its logic. The LoopHook trait contains default implementations for
general IPC and application error handling as well as buffer register setup. These are
used if no custom hooks are specified. The default handler does not keep state and
hence are implemented on a zero-sized struct. This allows the hook implementer to
keep state if required, e. g. to count the number of failures of a registered server object
to implement a fault tolerance strategy.

Using a vector keeps the implementation lean and in safe Rust, but has two major
drawbacks:

1. Each object registration and deregistration needs to touch heap memory. When
an object is inserted and the vector’s backing memory is too small, a new vector
is allocated and the elements are copied. This introduces an unpredictable over-
head from the server loop’s perspective. Object deletion is equally problematic,
since vectors are contiguous and deleting an object in the middle would mean
relocation, copying and changing all registered kernel labels.

47



2. By using Box and Vec, the application developer is forced to use the standard
library, pulling in a lot of dependencies. It is helpful to recall that the l4sys (C)
package is used to implement backend functionality for the libc, on which the
standard library is built in turn. Avoiding a dependency on dynamic memory
hence improves flexibility and makes the framework applicable to low-level
services.

5.4.2 Pointer-based Service Registration

The drawbacks of the vector approach led to a new design early in the develop-
ment phase. As explained before, C++ server objects share the common parent
type Epiface. It is therefore possible to reinterpret the incoming label as an Epiface
pointer and using the dispatch functionality without knowing the exact server im-
plementation. Because the dispatch method is virtual, simply upcasting the pointer
works. When a virtual method is invoked on the parent pointer, the vtable is consul-
ted for the actual method pointer. Rust in contrary favours static dispatch and does
not declare functions as virtual. Whenever dynamic dispatch is required, an object
reference is cast to a trait object which is a fat pointer containing the pointer to the
object and the pointer to the vtable. This means that methods are only virtual when
explicitly requested and have no runtime overhead otherwise. Due to this optimisa-
tion for the general case of static dispatch, using virtual dispatch is slightly more
expensive because a trait object is twice the size of a normal pointer: the pointer to
the object in memory and a pointer to the vtable. Since the label used by the kernel
for sender identification is only 64 bit in size, this poses the question how to point to
the object and the vtable at the same time.

During the analysis of the problem, I realised that a trait object is not required for this
task because there is exactly one target method in the Dispatch trait which contains
the information about where to dispatch an incoming message to. It is therefore feas-
ible to keep only the function pointer to the dispatch method, eliminating the need
for a fat pointer. A problemwith this approach is that the dispatch method still needs
a reference to the server object, i. e. the self-reference, to be able to call other struct
methods. Through a trick, we can obtain two pointers out of one label by placing the
wanted function pointer as a first member of the data struct. Assuming no reordering
of members takes place, the address of the object will match the address of its first
member. By assuming this memory layout, the received label from the kernel can be
cast both to a c_void pointer and a pointer to the first element of the struct, which is
a function pointer. This approach requires three assumptions to be made:

1. The type information of a server implementation is recoverable from an untyped
pointer, as which the label registered with the IPC gate can be reinterpreted.
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2. The layout of the server object in memory must be predictable at compile-time
and the function pointer needs to be the first member of it.

3. The object must not be moved to not invalidate the registered pointers.

To fulfil the first requirement, it is possible to leverage Rust’s type system by creat-
ing a generic function which casts a pointer from an untyped pointer (c_void) to
a generic one (T). The generic function is shown in Listing 5.8. As soon as a server
implementation makes use of this function, it specifies T to be of its own type Self,
causing the compiler to generate a specialised function. By taking a pointer to the
function with specialised types, it is possible to recover the type information from an
untyped pointer, as long as the function is associated with the server object that it
belongs to (see requirement two).

Listing 5.8

1 pub type Callback = fn(*mut libc::c_void, …) -> Result<MsgTag>;
2

3 pub fn callback<T>(ptr: *mut c_void, …) -> Result<MsgTag>
4 where T: Callable + Dispatch {
5 unsafe {
6 let ptr = ptr as *mut T;
7 (*ptr).dispatch(…)
8 }
9 }

With the introduced way to recover the type information from a raw pointer using the
type system, we can focus on the remaining two requirements. For requirement two,
the order of a struct must be fixed. This is not guaranteed in the Rust ABI. Through
the usage of the C ABI, the layout can be set to the same order as in the source code.
This is achieved with the #[repr(C)] annotation to the server struct.

A sketch of themainmemory layout is shown in Figure 5.1. It visualises the realisation
of the CalcServer struct and the generated callback<CalcServer>. The CalcServer
contains a pointer to the specialised callback function. This function is able to recover
the type information of the server from the c_void pointer. To document the special
requirements on function pointer setup and memory layout, the unsafe Callable
trait is used. Unsafe traits require special attention from the programmer and enforce
an unsafe impl block. The documentation comments explain the conditions to be met
for a type to safely implement the trait.

Figure 5.1 shows the process of the invocation of a user-registered protocol handler.
On message arrival, the server loop receives a label attached to a message which it
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Figure 5.1: Overview of the server object invocation from the server loop and the
required memory layout.
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has registered before with an IPC gate to identify the sender of the message (compare
Section 2.1 on page 8). Since it registered thememory address of the server object with
the kernel, it can now safely cast it to an untyped c_void pointer because the label
is still valid due to requirement three. The address of a struct matches the address
of its first member. Because of requirement two, it is therefore possible to reinterpret
the received u64 label as a double function pointer7 to the callback function of the
CalcServer struct. To start the message dispatch, the function pointer is dereferenced
and called, with the c_void pointer being its first argument. Listing 5.8 showed that
the untyped pointer is cast so that it serves as a self reference.

To fulfill assumption three, the server loop must ensure statically that the server ob-
ject is not moved (including not freed). Otherwise it is impossible to provide a safe
abstraction over this process and memory safety rules are violated. In comparison,
the C++ framework does not make any attempt to guarantee the validity of the server
object pointer and it is the responsibility of the developer to make sure that registered
server objects are either unregistered or outlive the server loop and are not moved. In
Rust, this problem can be solved by pinning an object in memory, e. g. by including a
member type in a struct which cannot be moved. This is achieved using a struct mem-
ber of type PhantomPinned. As long as an object is pinned, it is impossible to move
or free it, which gives the safe abstraction the guarantee about the object presence

7A pointer to the function pointer contained in the server struct.
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it needs. The Callable trait requires a pinned memory object which can be realised
adding a member of type PhantomPinned to the interface type.

The introduced approach is efficient, but requires the developer to know about a few
low-level implementation and memory layout details in order to use the server loop
efficiently. Apart from being a hurdle when learning the API usage, it also increases
the chance to introduce new bugs. It is hence good to hide this implementation over-
head through the usage of meta programming. Listing 5.4 on page 41 introduced the
#[l4_server] procedural macro attribute that derives implementations for some of
the required traits. It also automatically implements the Callable trait, that is, it adds
the correct function pointer at the first position of the struct and a pinned member.
This way, the unsafe details are hidden from the developer.

The complex casting of pointers is not as intuitive as the vector approach without
further explanation, but compiles to efficient machine code. The dispatch method of
the server loop results only in a few assembly instructions, as shown in Listing 5.9.
The references called mr and bufs are passed to the generated dispatch method of the
server to allow access to the message and buffer registers.

Listing 5.9: Disassembled codewith debugging information as displayed by objdump

let handler = ipc_label as *mut c_void;
let callable = *(ipc_label as *mut Callback);
callable(handler, tag, &mut mr, &mut bufs)

1000d5e: 48 8d bc 24 80 00 00 lea 0x80(%rsp),%rdi
1000d65: 00
1000d66: 48 89 ee mov %rbp,%rsi
1000d69: 4c 89 ea mov %r13,%rdx
1000d6c: 48 89 d9 mov %rbx,%rcx
1000d6f: 4c 8d 44 24 18 lea 0x18(%rsp),%r8
1000d74: ff 55 00 callq *0x0(%rbp)

Receive Demand Before a task can receive a Flexpage, it has to set up the buffer
registers so that the kernel knows where to map the incoming Flexpage to. If the
receiver fails to set up the receive slots (or receive windows) in advance, the IPC oper-
ation will fail with an error code to both the sender and receiver. The server loopmust
make sure that it sets up the buffer registers to specify the receive slots before it blocks
with a reply-and-wait operation. Since it has a global view on all registered servers,
it needs to set up the registers for the highest required demand for all methods of
all registered protocols. Simple services can be implemented with a demand of zero
receive slots, that is, services which do notmap any Flexpages. More complex services
as, for instance, a dataspace server needs to work with capabilities and needs to set
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up receive slots upfront. The interface specification encodes the information about
the receive slots in the types passed to the interface methods. That means that the
demand is known at compile-time. Yet the C++ framework requires the developer to
specify the demand manually. In its first version, the Rust framework followed a sim-
ilar approach. Each interface required a static demand specification as an associated
constant of the trait. This manual step resulted from the inability of Rust 1.0 macros
to match and compare types, hence making counting specific type tokens impossible.
Because of the reimplementation of the façade as a procedural macro, this restriction
was lifted and the demand is derived by the framework in the current version. To
provide a common API from outside to query this information, the Demand trait exists.
The #[l4_server] proc macro attribute generates the implementation for Demand by
using the hidden information from the interface trait. This way, the information is
transparently passed to the server loop which sets up the buffer registers before each
reply-and-wait automatically.

5.5 Interface Export

The previous sections showed that Rust provides the language features to build a
framework for inter-process communication and that most of the low-level details
can be hidden by either the type system or through meta programming. But even
though the interface definitions are concise and easy to read, it is a hurdle for a non-
Rust programmer to translate this into a corresponding C++ interface. Replicating
interfaces is also a common source of bugs, especially since conventions and types
differ between the frameworks. It also introduces the risk of updating only one inter-
face and neglecting the other. The ideal solution is hence an automated export of the
interface definition into a C++ header file.

In a first draft, I started to write a small prototype interface parser in Python that
parsed the Rust trait definition. I quickly realised that this was going to cause prob-
lems with each Rust syntax element that was not known to my custom Rust parser.
With the advent of procedural macros and their stabilisation in Rust 2018, it became
necessary to parse Rust source code from the procedural macro implementation (see
Section 2.2.3 on page 15). The macro author can use the syn crate for this task, which
implements a Rust source code parser. I have already explained the necessity to reim-
plement the frontend parsing code as a procedural macro in Section 5.2.2 on page 41.
Therefore, the complete code for parsing and verifying an interface was already in
place. The missing bit was the export logic.

The export routines are best called from a build script, which is the common place
for Rust libraries and applications to generate and write files. An idiomatic solution
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would provide a builder type8 that first configures the exporter and then generates
the C++ interface header. This proved to be impossible with the current Rust and
the BID integration. In this scenario, the interface parser and validator is located in
a common library shared among the l4_derive crate and the library containing the
exporter. Splitting this into three libraries is required because the Rust compiler does
not permit the usage of public types and functions from a procedural macro crate;
only macros can be accessed. In its current form, it is impossible to specify transitive
Rust dependencies in BID which is why this approach was not pursued further. As
an alternative, it is possible to rework the adaptation with custom registries which
complement the central Cargo registry with a custom one. This feature was stabilised
after the implementation for this framework was finished.

As a temporary workaround, I exposed the exporter as a procedural macro from the
l4_derive crate. It parses the options passed to it and the interface from the given file
name, generates the C++ header file andwrites it to the specified output path. Adapt-
ing it to a builder pattern later on has been kept in mind during the implementation
which is why the iface_export macro is small.

A few differences between the frameworks deserve special attention because of their
influence on the resulting C++ header file. First of all, the specification for input
and output parameters differs. While the Rust version specifies output parameters as
direct return types of the methods, the C++ version expects output parameters to be
passed as a mutable pointer or reference. Only references passed as const pointers are
treated as input parameters. The Rust interface expects all parameters to be passed by
value so that it can take ownership of it. Thismakes the programmer aware that a copy
of the value is required if it is still used after the send operation. Output parameters
are returned by value as well and are wrapped within a Result so that either a value
or an error is returned. Since the C++ framework returns IPC arguments using the
provided output parameters, the return value of the RPC function is unused and is
thus used to return the error code.

The type names also need to be adapted in the conversion process. The challenge
on the C++ side is to reference the correct type name from the correct namespace,
requiring a mapping of Rust type names to C++ type names as well as the C++
namespaces. To allow the generatedC++header file to be usedwithoutmodifications,
a list of mappings of C++ types to their include files is kept as well. It is possible to
extend these default mappings to also handle custom types.

Thanks to the syn9 library, the exporter can traverse generic arguments of types re-
cursively, allowing a complete translation of each Rust type.

8This refers to the builder pattern which is commonly used in Rust for object initialisation.
9See the introductory paragraph on procedural macros in Section 2.2.3 on page 15.

53



Listing 5.10: Build script example for the CalcServer interface

1 #![feature(proc_macro_hygiene)]
2 extern crate l4_derive;
3 fn main() {
4 l4_derive::iface_export!(
5 input_file: "../interface.rs",
6 output_file: "../cpp.h",
7 // optional: name: "CppReplacementName", protocol: 0xca1c
8 );
9 }

Listing 5.10 is a complete export build script for the Rust calculator interface which
already served as an example in previous sections. In line 1, the unstable language
feature for macro hygiene is activated. This is necessary because of the macro usage in
a statement context. This contradicts my goal of using stable Rust for the framework
implementation. Given that the export macro is a temporary solution and that inter-
face exports are optional, I decided to make use of this unstable feature for it. A future
solution using a builder pattern would not require macro hygiene to be enabled.

The comment in line 7 shows that this macro supports additional parameters, which
optionally influence the C++ header file generation: a custom name (potentially
better fitting the C++naming conventions) and a custom protocol specifier. A custom
protocol number is required whenever a protocol definition references a constant
outside the interface. This cannot be resolved by the interface parser and can hence
be overridden at this point.

5.6 Implementation Tests

This chapter showed that the implementation of an IPC framework has not been
straightforward and that rethinking the overall design has been required. Refactoring
phases carry the risk that new bugs are introduced into an otherwise working code
base. To mitigate this, software is often tested with unit tests or integration tests.
However, there is no public testing framework for L4Re available. In the beginning, I
filled this gap bywriting example applications to test and demonstrate certain aspects
of the framework. The obvious issue is that examples are not suited for testing all edge
cases of inputs and outputs for functions or components.

Rust comes with a default testing framework, integrated both into the compiler and
into Cargo. Its tight integration makes it the de-facto standard for Rust. It can test
functions within the crate (white box testing), outside the crate (black box testing)
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and even tests example code from the documentation comments. It uses conditional
compilation to compile the test cases with the test framework into an application bin-
ary which is then executed. Assertions, mainly through the assert! and assert_eq!
macros check conditions to hold. If a condition is expected to be false, the function
is annotated with #[should_panic]. The user can invoke the test suite by executing
cargo test which orchestrates the compilation and execution steps.

Using this framework without modifications is impossible for two reasons. The first is
that the assertions panic on failure. To allow the test framework to continue executing,
each test function call is wrapped in a panic catching environment which aborts the
backtrace generation and continues executing. Because the backtrace library has not
been ported to L4Re yet, panics cannot be cought. The second reason is that Cargo
executes the tests on the host by default. It offers the possibility to launch the binaries
using a wrapper script, executing the tests within QEMU. Starting an application in a
virtual machine with L4Re requires an entry in the modules.list boot configuration
to specify the components of L4Re to launch for this application. When I started
writing a script for the automation of this process, I discovered that L4Re lacks the
ability of shutting down the system from user space. There is the platform API which
specifies the shutdown action, but the functionality itself is not implemented.

I therefore decided to write a custom test framework. Its design goal was to retain
compatibilitywith the existing Rust framework and that the implementation overhead
is small.

Listing 5.11: Example test framework usage

1 tests! {
2 fn reimplemented__l4_is_invalid_cap__works() {
3 unsafe {
4 assert_eq!(
5 (l4_is_invalid_cap_w(L4_INVALID_CAP) > 0),
6 l4_is_invalid_cap(L4_INVALID_CAP));
7 }
8 }
9 }

Listing 5.11 shows the comparison of the l4_is_invalid_cap function with its C
counterpart10. All tests are wrapped within the tests! macro. It gathers the names
of all test cases and adds them to a list. Due to the simple design, there can be only
one macro invocation per module in which all test functions need to be contained.
The list of test functions is used by the main executor to run all tests in all modules.

10See Section 4.2.2 on page 30 for the discussion of reasons and the naming scheme.

55



Rust allows shadowing macro definitions which is used by the test application to re-
define the assertion macros. Their substitutes behave like the original (compare line 5
of Listing 5.11). Instead of panicking on assertion failure, they return a Result. The
main loop can then collect the results and print a test summary. This also preserves
the line number and the error message of the failing test.

In the original test framework, tests return no value. This conflicts with with the re-
definition of the assertion macros which abort the test by returning an error. The
function signatures of the tests can be kept compatible to the original test framework
by the usage of macro transformations. The tests!macro changes the function signa-
ture of line 2 of Listing 5.11 to return a Result<(), String> and extends the function
body to return Ok(()) after the successful run of a test. If in the future, the Rust test
framework is ported to L4Re, changing the tests is a matter of removing the tests!
macro and the shadowing assertion macros.

As already pointed out, it is currently impossible to shut down an L4Re system
through the platform API. There are solutions to this using I/O ports on x86 from
within QEMU [27], signaling QEMU to shut down the system. The solution intro-
duced here is a temporary one and I therefore decided against implementing shut-
down support for my test application. A similar effect can be obtained by executing
QEMU through a wrapper script. The wrapper script queries the QEMU console out-
put for a specific string that indicates the end of the test run and kills QEMU if this
string was found.
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6 Evaluation

The previous chapters have shown the applicability of Rust in low-level systems pro-
gramming on L4Re. This chapter focusses on evaluating the framework against the
design goals set out in the introduction. An exception is binary compatibility, which
has been demonstrated in the previous chapters through the CalcServer example
and the interface exporter. The following two sections will focus on the evaluation of
efficiency and easy usability of the framework.

6.1 Execution Performance

An IPC framework is only accepted in low-level systems programming if it keeps the
introduced overhead minimal. The baseline for benchmarks is the IPC framework
of L4Re written in C++ that has been optimised for many years and is used in the
majority of L4Re services.

The benchmarks have been conducted on an Intel® Core™i5-4590 quad-core processor
of the Haswell line with a base clock frequency of 3.30GHz running a 64 bit version
of L4Re. This CPU features a maximum single-core-clock speed of 3.70GHz. The
benchmarks have been executed on an L4Re build of the 18.11 snapshot with a Rust
compiler from Git1 The measurements were run on a single core exclusively, thus
measuring single-core IPC.

The common metric for performance in the L4 community is the clock cycle which is
used here as well. It is measured using the Intel x86 rdtsc and rdtscp instructions
which emit the clock cycles passed since the CPU was started. The rdtsc instruction
does not enforce an order of the execution in the CPU pipeline. Thus there is no
guarantee that the cycle counter is read before or after the event to measure [28]. Intel
instead suggests to use the rdtscp instruction, which pseudo-serialises the instruction
stream by waiting for previous instructions to be finished. Subsequent operations
can already start executing and hence the read can happen later than the event to
measure [28]. Taking precise measurements down to individual clock cycles is thus
not realistic.

1The commit hash is b8fa4cb31dcb2c3ed2c61f80ca6d0, with the added patches for L4Re linking.
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The l4util C library from the l4re-core directory provides an rdtsc function, but
lacks one for rdtscp. I added this function using inline assembly. Rust offers support
for both instructions in its standard library. Pseudo-serialising the instructions and
reading the clock counter takes time and hence influences the measurement. This
is why IPC round trip measurements were conducted with the microbenchmarking
facilities disabled.

The relevance of the IPC framework performance can be better judgedwhen determin-
ing the IPC operation costs beforehand. Figure 6.1 shows the distribution of execution
time of a send operation from a client to a server. This test was executed 1000 times
both for a Rust and for a C++ client/server pair.

Figure 6.1: Measurements of IPC cost for a send operation from a client to a server
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The performance decrease from the C++ to the Rust version is roughly 13 % for the
median speed. This can be attributed to the inlining of the l4_ipc_call and l4_utcb
functions in the C++ variant, discussed in Section 4.2.2 on page 30. Rust has a few rare
outliers up to 1172 cycles. The source of these remains unclear. The standard deviation
for Rust is 7.87 cycles and for C++ 8.01 cycles and thus close to the average case. The
accumulation of measurements around the average values is potentially caused by
cache usage patterns. The rdtscp instruction seems to favour even numbers, which
can be observed in the following benchmarks as well.

The subsequent benchmarks evaluate performance in a fine-grained manner. The
measurement instructions were inserted into the C++ and Rust frameworks, so that

58



the individual steps can be compared across the benchmarks and were disabled for
round trip measurements. The microbenchmarks are split into 12 steps. The first
one is the call setup which initialises pointers to the message registers and other
variables. It is followed by the serialisation of the opcode and the call arguments.
After the message tag has been prepared in the IPC call setup, the IPC call is executed,
triggering a context switch to the server. The time required to retrieve the server
implementation from the IPC gate label to the dispatch method of the interface is
called “loop dispatch”. Afterwards the opcode and the method arguments are read.
These are used to execute the interface method and then its return value is serialised
again. The reply setup, the IPC reply operation and the return value deserialisation
work in an analogous manner. All diagrams use the median of the clock cycle count.

6.1.1 Primitive Types

Primitive types are native Rust types with a fixed size and have a counterpart in C++.
Examples include u32, bool and f64. As an exception, Flexpages can be treated as
primitive too because they are serialised to two machine words on the sender and
one word on the receiver side.

Figure 6.2 shows the measurements for a simple subtraction test. It is borrowed from
the CalcServer interface that served as an example before. In this test, the client sends
two integers to the server and expects the subtracted value as the result.

The dominating costs are the L4Re IPC operations, all other operations are below 200
cycles. The two implementations vary in individual steps, but the overall performance
is comparable. The “loop dispatch” step refers to the dispatch from the generic server
loop to the registered server object, see Section 5.4.2. The Rust version is fast, likely
due to the optimisation described in Section 5.4.2 on page 48.Without further analysis,
it is hard to find the reason for the slower C++ variant, but a possible reason could
be the virtual method dispatch.

In general, the figure shows that the frameworks yield comparable performance with
a slight variation among the different steps. The overall performance gap from Rust
to C++ can be attributed to the additional IPC costs, compare Figure 6.1.

In the Flexpage benchmark, the client allocates a capability and requests a mapping of
it to the server. The server receives it and checks the validity of the received capability.
On both sides, the interface method signatures reference a specialised capability type
such as Cap<Dataspace>. The conversion from and to a Flexpage is done transparently.
On the server side, recovering the type from the mapped capability is a zero-cost
abstraction because the type is known at compile time. Figure 6.3 suggests that the
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Figure 6.2: Benchmark of IPC performance using primitive integer arguments

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

ca
ll 
se

tu
p

writ
e 

ar
gs

IP
C c

al
l s

et
up

IP
C s

en
d

lo
op

 d
isp

at
ch

re
ad

 o
pc

od
e

re
ad

 a
rg

s

ex
ec

 u
se

r i
m

pl

writ
e 

re
su

lt

re
pl

y 
se

tu
p

IP
C re

pl
y

re
ad

 re
su

lt

C
lo

ck
 C

y
cl

e
s

Rust
C++

read operation of the Flexpage containing the capability process is not as efficient as
it can be. This is left for future work.

On the sender side, a Flexpage consists of a description of the object or memory page
to map and the flags describing the object, taking up two words. On the receiving
side, the server loop sets up a buffer register for each Flexpage to expect. Because of
this simple memory layout in the registers, this benchmark was treated as a primitive
type benchmark.

The benchmark of Figure 6.3 shows a similar pattern as Figure 6.2. Reading and
writing the arguments is as fast as in the subtraction test which suggests that the type
recovery of the Cap<Dataspace> object is without any runtime cost.

6.1.2 Strings

The C++ framework provides array types to transmit data in contiguous arrays of
variable size using theUTCB. The array has to fit into themessage registers, in addition
to the other data that is transmitted with it. The serialised array starts with the length
and is followed by the aligned data.

60



Figure 6.3: Benchmark of the performance of object Flexpage mappings
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In both IPC frameworks, strings are implemented as a special case of arrays containing
data of type char. In contrast to C strings, the trailing null byte is not mandatory, but
suggested. The C++ IPC string does not own the data, but contains a pointer to it. On
the client side, the framework takes care to copy the data into themessage registers. On
the server side, the string data needs to be copied from and to the registers manually.
This is similar to the handling of &str in the Rust framework, see 5.3 on page 45. The
usage of a String in Rust is more convenient because of its automated allocation
management. &str only borrows existing data without allocation and thus requires
more care by the programmer.

Figure 6.4 compares String, &str and the C++ string implementation against each
other. The benchmark uses a string of 113 characters in length and sends it in a loop
from client to server and back.

There is a noticeable delay for all tests in the “call setup” step, the time between the
first measurement just before the call to the generated client method and the point
where the argument serialisation starts. The setup code itself is short and hence the
time is probably spent in the serialisation code afterwards. It is unclear why writing a
&str is faster than writing a String because the code for it is identical. Deserialising
the string from the UTCB is slowest for the heap-allocated String, but reading the
&str is also slow. The C++ variant is order of magnitudes faster because it delegates
the string copy to the user so that the user implementation is much slower. In contrast,
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Figure 6.4: IPC ping pong benchmark of the Rust String and &str as well as the C++
IPC string type
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the execution of the user implementation for the Rust String is fast because the copy
operations are handled by the framework.

The numbers from Figure 6.4 show a clear performance penalty for using Rust strings.
A possible cause could be the check for UTF-8 validity, but this can only be clarified
by further experiments. A dedicated string type with relaxed safety and correctness
guarantees can be another solution.

6.1.3 Round Trip Measurements

The round trip times of IPC calls offer a coarse-grained view on different operations of
the framework. To take measurements, the library code can be left untouched, instead
the CPU counter is queried before and after the call. This avoids the introduction of
delays introduced by microbenchmarks.

Figure 6.5 compares the test cases from the previous sections. In contrast to C++, the
Rust framework supports different string types, therefore the measurements of the
C++ IPC string were replicated for easier comparison.
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Figure 6.5: Comparison of the round trip times from a full IPC call for each benchmark

 2000

 2400

 2800

 3200

 3600

 4000

 4400

 4800

 5200

 5600

 6000

 6400

pr
im

iti
ve

 s
ub

tra
ct

io
n

ca
pa

bi
lit

y 
m

ap
pi

ng

&st
r p

in
g 

po
ng

&st
r n

on
-U

TF
8

St
rin

g 
pi

ng
 p

on
g

C
lo

ck
 C

y
cl

e
s

Rust
C++

From left to right, we have a performance decrease from Rust to C++ of around
25,8 %, 39,2 %, 77,6 % and 103,4 %. The efficiency decrease for the primitive test cases
is acceptable, given that the tests are compared to a C++ framework which has been
optimised for years.

The string handling is inefficient, nearly doubling the time spend for the IPC. For
investigating the performance loss, the mandatory UTF-8 check for a string during
its initialisation was thought to be the most obvious cause. For comparison, &str has
been benchmarked with and without this check. The performance gain for a string
with 113 characters is only around 400 cycles so that it can be concluded that the
majority of time is spend somewhere else. A possible reason could be an inefficient
handling of the fat pointer by the framework. This investigation is left for future
work.

6.2 Usability

To increase the acceptance of a new programming language in the L4Re ecosystem,
the transition to it must be as smooth as possible and may not introduce incompatible
work flows or result in incompatible software. It is also important that its advantages
justify the introduction of new libraries or services into the system. The new compon-
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ents should not result in an unmaintainable system because of high fragmentation
among different programming languages.

This section covers the ease of use from multiple perspectives. It starts with the addi-
tional safety guarantees, followed by a summary of the idiomatic interface definition
and usage. Afterwards, the exclusive usage of stable Rust is discussed, concluded by
an evaluation of the L4Re integration.

6.2.1 Safety

Rust’s borrow checker allows to reason about a number of safety guarantees during
compile time. This includes, but is not limited to, memory safety and the prevention
of data races in concurrent programs. The aim of each Rust library is the minimisation
of unsafe blocks and functions. In low-level programming, this is impossible because
accessing and mutating machine state is inherently unsafe [35].

The l4rust libraries, which also contains the IPC framework, are made up of about
3330 lines of source code, of which 262 lines (7.86 %) are unsafe or marked as such.
The framework counts over 2460 lines, with 167 lines (6.79 %) marked as unsafe.
These numbers are reported both by cloc and cargo-count. In certain situations,
unsafe code cannot be avoided, as for instance in the server dispatch scenario (com-
pare Section 5.4.2). In other situations, an unsafe trait or function is used to make
the developer aware that certain conditions must hold for this type and violating
them leads to undefined behaviour. There is no utility that allows for automated ana-
lysis of the different scenarios for unsafe code usage, but it can be assumed that the
number of lines performing actual unsafe operations is even lower. Defining an IPC
interface, deriving a client and implementing a service can be achieved using safe
Rust exclusively (compare Listings 5.3 and 5.4). The developer can thus rely on the
framework to never hand out invalid references, use uninitialised or freed memory
or create memory leaks.

To avoid buffer overflows and accessing uninitialised memory, Rust inserts bounds
checks. The IPC framework follows this pattern by adding bounds checks for UTCB
accesses which take place during serialisation.

6.2.2 Interface Usage

Intuitive usability was a key goal from the beginning. It was therefore a logical con-
sequence that an IPC interface is represented as a Rust trait, which is Rust’s way of
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defining common API. Both the client and the server share the trait definition, res-
ulting in decreased maintenance cost for interface adjustments. Input and output
parameters are passed like for local methods. Due to the trait bound on Serialiser,
the compiler provides a meaningful error message to the user if an invalid type is
passed. In contrast to the C++ framework, types do not differ between sender and
receiver.2

IPC errors and framework errors are handled using Rust’s standard error handling
facilities. This means that errors can be propagated upwards using the question mark
operator and handled where appropriate. Through the usage of Rust enums, errors
can be represented as a human-readable mnemonic that eases debugging. Converting
from an error code to an error enum is cheap and converting from an error enum
value to an integer is a no-op because of its internal representation.

Extending the IPC framework is possible through the usage of the Serialiser trait.
This can be done in safe Rust3. The server loophas beendesigned to allow to hook addi-
tional event handlers into the reply-and-wait cycles. Events include IPC or application
errors. This facilitates the customisation of the server loop without reimplementing
it.

The interface exporter accepts the specification of additional mappings from Rust to
C++ types, aswell as the specification of additional required namespaces and include
paths. This allows for the usage of custom types in the interface definition and the
automated export to a C++ header file.

The framework makes use of Rust macros. Repetitive work is avoided by the use of
1.0 macros and low-level implementation details are hidden by procedural macros
(compare Section 5.2.2 on page 39). Especially the latter allow the programmer to fo-
cus on defining the IPC interface and implementing the server logic without the need
to know about buffer register setup, type deserialisation and message dispatch.

A disadvantage of basing the framework on interface traits is that it requires an addi-
tional client and server struct which implement the trait. In C++, the interface serves
as the client-side IPC object, avoiding the need to search for another name.

To allow shared server state, the interface demands a mutable self-reference as its
first argument. This is inflexible because this forces the client object to be marked as
mutable on initialisation, even though it does not contain mutable state.

2An example is String<> for an input and String<char> for its corresponding output parameter.
3The Serialiser trait requires the read and write functions to be marked as unsafe, but this serves a
documentary purpose.
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6.2.3 Stable Rust

The Rust team has chosen to release a new version every six weeks, supplemented
with bug fix releases. Each new version adds a few new features or stabilises API from
the nightly version. Breaking changes are only introduced in Rust editions. Basing
the framework on Rust has been an ambitious aim. A few of the required features
were unstable when the implementation started and were stabilised late or after the
implementation work was done. In comparison to Clipsham [4] and Foellmi [9], Rust
has reached a level of maturity with the 2018 edition. This also applies for the tooling
of Rust. For instance, it is easy to add a custom cross-compilation target to rustc and
to compile a new version of the compiler without prior knowledge.

The final design relied on the two features: align offset and associated type defaults. The
first has been stabilised just after the benchmarks were taken. The second is easy to
avoidwith theminor drawback that the operand code for a protocol cannot be queried
from the client or server struct.

6.2.4 L4Re Integration

The BID integration compromise has sufficed for the framework development and
enabled substantial improvements in comparison to my previous work [12; 13]. Build
scripts, conditional compilation anddependencymanagement for crates from crates.io
works and native Rust libraries are handled by BID.

Aproblem is themanual recompilation of transitive dependencies. For instance, an up-
date of the l4-rust library requires l4re-rust to be recompiled. BID cannot handle
this appropriately because it lacks the dependency information. Compiling Rust is
slower than compiling a C++ program4 and the manual recompilation of the L4Re
libraries increases the waiting time.

The integration of the Rust programs into the L4Re ecosystem is smooth. Rust pro-
grams can interface seamlessly with C++ services and use C libraries. Exporting Rust
definitions to C++ is easy and can be automated.

4This is hard to quantify, but has been a recurring topic on the official Rust blog and in the official Rust
user surveys. See https://blog.rust-lang.org/2018/11/27/Rust-survey-2018.html.
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7 Conclusion

In this thesis, a new framework for L4Re IPC communication, written in Rust, was
presented and evaluated. The implemented framework builds on top of Rust’smemory
safety guarantees and extends them to safer IPC mechanisms. Its design goals in-
clude easy usability, binary compatibility to existing solutions and high efficiency.
Rust’s powerful macro system was used to provide a user-friendly interface with a
flat learning curve. Binary compatibility has been ensured by implementing a custom
test framework and by various example programs. The performance was evaluated
through a number of benchmarks with different usage scenarios.

Rust has proven to be a language suitable for systems programming with perform-
ance comparable to C and C++ [5; 24]. Its advanced type system allows complex
interactions to be expressed and to abstract from low-level details. The language con-
tains high-level constructs such as iterators, closures, operator overloading and more
that impose no or only a small runtime overhead [16; 23; 24]. This has been proven
to be of great help during the implementation of the data serialisation into the UTCB
registers. Together with the safe abstractions from the framework, example services
were written without any of the typical memory management bugs.

The achieved benchmark performance of the Rust framework lies within the same
magnitude of measurements compared with the existing C++ framework. It showed
that the time for this thesis did not suffice to reach equal efficiency. This is not surpris-
ing because the C++ framework has been optimised for years by multiple developers.
The performance decrease lies between 25 % up to 103 %, with string passing being
the most inefficient operation (compare Figure 6.5). In future work, string serialisa-
tion should be revised and a type with less requirements on the string data should
be supported.

The usage of C wrapper functions for preparing and sending IPC messages should
be rewritten in Rust to allow for inlining of them. This could improve cache locality
and would result in more efficient IPC calls. The usage of procedural macros offer the
possibility to optimise the code generation further. For interface methods that take
arguments with a size known at compile time, the bounds checks can be omitted,
avoiding jumps in the instruction stream. In this scenario, the message tag can be
precomputed as well. This would for instance apply to all methods of the commonly
used dataspace interface, except the copy_in [18].
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The integration of Cargo into BID is incomplete. Cargo is still not suited to be integ-
rated into other build systems. One example is the missing possibility to add custom
linker arguments containing spaces to the linker call. It is also obstructive for debug-
ging that the library libbacktrace, which Rust uses to print a stack trace in the case
of an error, cannot be compiled for L4Re. This is because Rust uses a different version
than the L4Re snapshot. In future work, it should be tried to either publish L4Re’s
version or to extend that one of Rust.

The thesis showed that the stable version of Rust is applicable for the implement-
ation of a low-level IPC framework for L4Re. Its high-level programming concepts
and its ability to abstract from unsafe operations in a safe fashion allows the conveni-
ent realisation of microkernel services. There are still enhancement possibilities that
suggest to continue the implementation of the framework. Further research should
focus on leveraging Rust’s type system to aid the developer with low-level memory
interactions and to improve the static analysis of the interface definitions.
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B Glossary

BID The GNU-Make based buildsystem for L4Re; builds both kernel and L4Re ser-
vices, as well as external packages.

crate Rust project unit, usually a term for a Rust library, but also less frequently for
binary projects.

fat pointer Pointer larger than the actual machine-specific pointer type, containing
additional information such as the vtable pointer, etc. Examples are trait objects
and the Box type..

message tag An additional machine word attached to each L4Re message to inform
the receiver of a message about the protocol being used, the number of typed
and untyped words sent and additional flags. The kernel uses the information
about the number of words to copy the required data..

opcode Operation codes, used to identify the operation to be executed. It selects the
interface method in an IPC operation..

ABI Application Binary Interface.

API Application Programming Interface.

AST Abstract Syntax Tree.

DSL Domain-Specific Language.

FFI Foreign Function Interface.

IDL Interface Definition Language.

72



IPC Inter-Process Communication.

RPC Remote Procedure Call.

UTCB User-Space Thread Control Block.

vtable virtual method table.
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